
Gilad Shainer, Pavel Shamis, Steve Poole, Yossi Itigin, Manju G. Venkata, Gil Bloch

ISC 2021

ISC 2021 BoF Session

© 2021 UCF Consortium 2

Unified Communication Framework (UCF) Consortium

MISSION: Collaboration between industry, laboratories, and academia to create

production grade communication frameworks and open standards for data centric,

ML/AI, and high-performance applications

https://www.ucfconsortium.org or info@ucfconsortium.orgJoin

▪ Board members
• Jeff Kuehn, UCF Chairman (Los Alamos National Laboratory)

• Gilad Shainer, UCF President (Nvidia)

• Pavel Shamis, UCF Treasurer (Arm)

• Brad Benton, Board Member (AMD)

• Yanfei Guo, Board Member (Argonne National Laboratory)

• Perry Schmidt, Board Member (IBM)

• Dhabaleswar K. (DK) Panda, Board Member (Ohio State University)

• Steve Poole, Board Member (Open Source Software Solutions)

▪ Projects & Working Groups
• UCX – Unified Communication X – www.openucx.org

• UCC – Collective Library

• OpenSNAPI – Smart network Project

• SparkUCX – www.sparkucx.org

• UCD – Advanced Datatype Engine

• HPCA Benchmark – Benchmarking Effort

https://www.ucfconsortium.org/
mailto:info@ucfconsortium.org

© 2021 UCF Consortium 3

Why UCX ?

Networks

Host Memory:

x86, Arm, Power

GPU Memory:

AMD RoCM,

NVIDIA CUDA

DPU Memory

Host Memory:

x86, Arm, Power

GPU Memory:

AMD RoCM,

NVIDIA CUDA

MPI PGAS ML/AI

Frameworks

Data Analytics Storage DPU

DPU Memory

C/C++ Java Python

High-Performance Universal Data Mover

Go

© 2021 UCF Consortium 4

UCX Users

▪ MPI implementations: MPICH, Open MPI, NVIDIA HPC-X, Huawei MPI

▪ PGAS: GasNET

▪ OpenSHMEM: OSSS SHMEM, Sandia SHMEM, Open MPI SHMEM

▪ Charm++

▪ RAPIDS / DASK

▪ Spark UCX

▪ NVIDIA NCCL

CUDA

PYTHON

APACHE ARROW

D
A
S
K

DEEP LEARNING

FRAMEWORKS

CUDNN

RAPIDS

CUMLCUDF CUGRAPH

U
C
X
-P

Y

Applications

Charm++ Programming Model

Converse Runtime System

Low Level Runtime System Interface
(LRTS)

uGNI verbs libfabric TCP/IP UCXMPI

LangsLibs

More
machine

layers

Diagram courtesy of NVIDIA Diagram courtesy of Nitin Bhat @ Charmworks Inc

© 2021 UCF Consortium 5

Content

API for Smart Network (DPU) programmability

Web https://www.ucfconsortium.org/projects/opensnapi/

GIT https://github.com/openucx/shmem-opensnapi

UCC - Collective Communication API

Web https://www.ucfconsortium.org/projects/ucc/

Git https://github.com/openucx/ucc

Git https://github.com/openucx/ucc_spe

Git https://github.com/openucx/torch-ucc

info@ucfconsortium.org

UCX – Unified Communication X

Web https://www.openucx.org

Git https://github.com/openucx/ucx

Docs https://openucx.readthedocs.io

Mailing list https://elist.ornl.gov/mailman/listinfo/ucx-group

https://github.com/openucx/shmem-opensnapi
https://github.com/openucx/shmem-opensnapi
https://www.ucfconsortium.org/projects/ucc/
https://github.com/openucx/ucc
https://github.com/openucx/ucc_spe
https://github.com/openucx/torch-ucc
mailto:info@ucfconsortium.org
https://www.openucx.org/
https://github.com/openucx/ucx
https://openucx.readthedocs.io/
https://elist.ornl.gov/mailman/listinfo/ucx-group

© 2021 UCF Consortium 6

Open source framework for high-performance networks

© 2021 UCF Consortium 7

UCX Latest Development

▪ UCP extensible datapath API – “nbx”

• Mandatory parameters – passed as regular arguments

• Optional/extended parameters – passed in a struct “ucp_request_param_t”

• Allows future extensions without ABI/API breakage, and still enjoy fastcall

▪ UCP active messages – generic high-level communication primitive

• Added rendezvous protocol, which uses zero-copy RDMA for bulk transfer

• Support GPU memory for all operation types

© 2021 UCF Consortium 8

UCX Latest Development – Cont.

▪ New client-server connection protocol

• Quick one-sided disconnect with remote notification (like TCP)

• Multi-device and multi-path

• Revamp RDMA_CM and TCP connection managers for better stability

▪ GPU support improvements

• Select NIC according to GPU locality on the PCIe bus

• Support statically-linked Cuda applications

• Global cache for Cuda IPC remote memory handles

▪ Error handling improvements

• Keepalive on UCP layer to detect stale peers

• Auto-revoke all queued requests when connection is closed

© 2021 UCF Consortium 9

UCX Latest Development – Cont.

▪ Global configuration file to set UCX parameters

▪ Shared memory to support asynchronous wakeup

▪ UD performance optimizations

▪ Java bindings – full support for UCP API

© 2021 UCF Consortium 10

UCX Roadmap

▪ Release schedule:

• v1.11: August 2021

• v1.12: December 2021

• v1.13: March 2022 (Tentative)

▪ Wire protocol compatibility

▪ SRD support for AWS systems

▪ Rendezvous protocol with scatter-gather lists

▪ Golang bindings

▪ UCP active message improvements

• Set receive buffer alignment

• Fragmented receive protocol

▪ One-sided improvements:

• Support GPU atomic operations (both on source and target)

• Multi rail and out-of-order with PUT/FENCE

© 2021 UCF Consortium 11

Open-source project to provide an API and library implementation of

collective (group) communication operations

© 2021 UCF Consortium 12

UCC Design Challenges

▪ Unified collective stack for HPC and DL/ML workloads

• Need to support a wide variety of semantics

• Need to optimize for different performance sensitives - latency, bandwidth, throughput

• Need for flexible resource scheduling and ordering model

▪ Unified collective stack for software and hardware transports

• Need for complex resource management - scheduling, sharing, and exhaustion

• Need to support multiple semantic differences – reliability, completion

▪ Unify parallelism and concurrency

• Concurrency – progress of a collective and the computation

• Parallelism – progress of many independent collectives

▪ Unify execution models for CPU, GPU, and DPU collectives

• Two-way execution model – control operations are tightly integrated

- Do active progress, returns values, errors, and callbacks with less overhead

• One-way execution model – control operations are loosely integrated

- passive progress, and handle return values (GPU/DPUs)

© 2021 UCF Consortium 13

UCC Design Principles: Properties we want

▪ Scalability and performance for key use-cases

• Enable efficient implementation for common cases in MPI, OpenSHMEM and AI/ML

▪ Extensible

• We cannot possibly cover all the options and features for all use cases

• We need the API and semantics that is modular

▪ Opt in-and-out

• If for a certain path some semantic is not applicable, we need a way to opt-out

▪ Explicit API and semantics over implicit

• Explicit -> implicit is easier than implicit -> explicit

▪ Minimal API surface area

• Lessen the mental load

• A few set of abstractions to understand and go into details when required

▪ Other properties are such as the ability to override functionality, programmability, expressing

general and specific functionality are important

© 2021 UCF Consortium 14

UCC’s Solution

▪ Abstractions

• Abstract the resources required for collective operations

• Local: Library, Context, Endpoints

• Global: Teams

▪ Operations

• Create/modify/destroy the resources

• Build, launch and finalize collectives

▪ Properties

• Explicit way to request for optional features, semantics, and optimizations (opt-in or opt-out model)

• Provides an ability to express and request many cross-cutting features

• Properties are preferences expressed by the user of the library and what the library provides is queried

© 2021 UCF Consortium 15

UCC’s Concepts

▪ Abstractions

• Collective Library

• Contexts

• Teams

• Endpoints

▪ Operations

• Create, and destroy the abstractions

• Post collective operations

• Triggered post operations

▪ Details of concepts

• Code: https://github.com/openucx/ucc

• Slides: https://github.com/manjugv/ucc_wg_public

© 2021 UCF Consortium 16

UCC Specification: Interfaces and semantics fully specified

▪ Specification available on the UCC GH

▪ Specification is ahead of the code now

▪ The version 1.0 is agreed by the working

group and merged into the master branch

▪ Over 75 pages of detailed information about

the interfaces and semantics

▪ Doxygen based documentation

▪ Both pdf and html available

© 2021 UCF Consortium 17

UCC Reference Implementation: Component Diagram

© 2021 UCF Consortium 18

UCC: Reference Implementation Status

© 2021 UCF Consortium 19

UCC v1.0 Expected to Release Q3 2021

▪ v0.1.0 Early Release (Branched Q1 2021)

• Support for most collectives required by parallel

programming models

• Many algorithms to support various data sizes,

types, and system configurations

• Support for CPU and GPU collectives

• Testing infrastructure

- Unit tests, profiling, and performance tests

• Support for MPI and PyTorch (via Third-party

plugin)

▪ Expected July 31st.

▪ v1.0 Stable Release (Expected SC 2021)

• Incorporate feedback from v0.1.0 release

• Support for OpenSHMEM with one-sided

collectives and active sets

• Hardware collectives - support for SHARP

• Support for more optimized collectives

(hierarchical/ reactive)

• Infrastructure for pipelining, task management ,

and customization (algorithm selection)

• Persistent collectives

▪ v1.x Series: Focus on stability, performance
and scalability

• Support for DPUs and DPAs

• Partitioned collectives

• OpenSHMEM Teams and nonblocking

collectives

© 2021 UCF Consortium 20

Plenty of work : Contributions are Welcome!

▪ What contributions are welcomed ?

• Everything from design, documentation, code, testing infrastructure, code reviews …

▪ How to participate ?

• WG Meetings : https://github.com/openucx/ucc/wiki/UCF-Collectives-Working-Group

• GitHUB: https://github.com/openucx/ucc

• Slack channel: Ask for an invite

• Mailing list: ucx-group@elist.ornl.gov

mailto:ucx-group@elist.ornl.gov

© 2021 UCF Consortium 21

Open-source, standard application programming interface (API) for accessing

compute engines on smart networks

© 2021 UCF Consortium 22

OpenSNAPI

▪ OpenSNAPI – contributors to this talk
• Thanks to Gil Bloch, Gary Grider, Morad Horany, Alex Margolin, Tal Mizrahi, Brad Settlemyer and Brody Williams

▪ OpenSNAPI was initiated to define a common, open portable API for smart networks from all vendors and all flavors
of smart networks (processor based, FPGA based, ASIC based…)
• The goal is an API for Computational offload in the network (NIC/DPU/Switch/Storage)

▪ Benefits of smart network Accelerators
• Operate on data in place at network edge
- Minimize data movement

• Computation of data in-flight
- Collective/AMO operations

- Offload kernels into the network

• Energy efficiency
- Edge/In-network computing is efficient

- Arm cores are typically more energy-efficient than x86_64 analogs

- Reduces operational costs

▪ Progress
• Focus on exploring what is possible with smart network-based acceleration
- Examine feasibility of both computation and communication offloading with scientific applications

• Utilize smart network devices within SHMEM/MPI as if completely distinct nodes
- Minimize experimentation overhead

- Distinct code segments for host and smart network PEs
▪ MPMD model

LA-UR-21-26018

© 2021 UCF Consortium 23

OpenSNAPI I/O Offloading Study

▪ BigSort Benchmark1 (LLNL)

▪ Parallel sort of 64-bit integer values

• Total data size may exceed available memory resources

• Integer operations, all-to-all communication, file I/O

• MPI + OpenMP

▪ Two Phases:

I. Sort values from distinct data segments into num_nodes bins; transfer binned values to appropriate

destination via MPI_AlltoAllv()

II. Perform sort of local data into proper sequence

▪ Interleaved computation and file I/O

LA-UR-21-26018

© 2021 UCF Consortium 24

OpenSNAPI Use Case – I/O Offloading

•MPI Calls

•QuickSort

•Data Merge

•Write()

Phase 1 Phase 2

LA-UR-21-26018

© 2021 UCF Consortium 25

OpenSNAPI Use Case – I/O Offloading

Phase Two Abstraction

LA-UR-21-26018

© 2021 UCF Consortium 26

How Does LANL Get From

Compute/
Clients

Lustre
OSS

Lustre
MDS

Lustre
OST

IO Backbone
(Infiniband)

BB/PFS
Routers

Lustre
MDT

PiBs of RAM

10s of PiBs of Flash
100s of PiBs of Disk

Compute/
Clients PFS Servers

Lustre
Servers

Specialize
d S/W
Stacks

I/O Gateways
(optional)

IO Network
(IB/Ethernet)

10 PiBs of HBM

~100 PiBs of Flash

Disk/Tape Archive

(100s of PB)

NVMe Fabrics
Enclosures

Pmem
Connectors

Archive
Gateways

Current Future

Disaggregated LA-UR-21-26018

© 2021 UCF Consortium 27

OpenSNAPI - Progress report from Huawei

▪ Our focus: Scalability

• Network-wide Smart-NIC resource discovery and utilization

• Serving multiple clients from a single Smart-NIC, either local or remote

• Topology-aware configuration of Smart-NICs

▪ How this translates to actual features?

• Emphasis on remote management of Smart-NICs (relying on gNMI and gRPC)

• Topology-dependent allocation of Smart-NIC resources within the cluster/datacenter

• API combines existing hardware offloads with custom user programs for the Smart-NIC

github.com/openconfig/gnmi
https://grpc.io/

© 2021 UCF Consortium 28

Overview of Basic Flows

▪ The actors:

• The “target”, offering its Smart-NIC

• The “initiator”, willing to utilize it

• Central “Manager” (got to have those ☺)

▪ General flow:

1. Initiator asks for some logic/resources,

2. Target allocates and sends the details,

3. Initiator sends packets to apply it on,

4. The transaction is complete.

Stage 1: Discovery

Initiator Manager Target NIC Target Host

Announcement
"I provide offload X"

to simplify the NIC,
the host can do this

Discovery Request
"who has offload X?"

Discovery Reply
"Y has offload X"

Stage 2: Coordination

Coordination Request
"allocate a port for offload X"

Coordination Reply
"offload X is read on port 123"

Stage 3: Execution

complex requests
may involve the host

the host may need
to set up the NIC

Payload
"use offload X on this payload"

Optional: Tear-down

Coordination Finalize
"done using offload X / port 123"

host may also need
to release resources

© 2021 UCF Consortium 29

OpenSNAPI Group Mission

▪ Enabling open, data-centric computing architectures

▪ The OpenSNAPI project mission is to create a standard application programming interface (API)
for accessing the compute cores on the network, and specifically on the network adapter

▪ OpenSNAPI allows application developers to leverage the network compute cores in parallel to
the host compute cores, for accelerating application run time, and to perform data operations
closer to the data.

▪ Multiple use cases

• Communication offload

• Application acceleration

• Security offload

• Security enforcement

▪ Multiple deployment scenarios

• Factory-based

• Software update

• Run-time

© 2021 UCF Consortium 30

Proposed Basic OpenSNAPI Services

▪ OpenSNAPI mission is wide and does not limit new ideas!

▪ Service / offload / acceleration engine provisioning

• Factory-based / Software update?

• At runtime? At tenant / user / job provisioning?

• Any user code? Certified code?

▪ Service Registration and Discovery

• What services are available on a local device?

• What services are available on any remote device?

▪ Service Communication Channel

• Configuration and control

• Data-path

© 2021 UCF Consortium 31

Communication Channel – Message Queue APIs

VM 1

Smart Network HW/FW
Comm-Channel
Low-level API

OpenSNAPI SW
Message-Queue

API

A
p
p
 1

A
p
p
 2

S
e
rv

ic
e
 a

S
e
rv

ic
e
 b

HostSmart Network

S
e
rv

ic
e
 c

VM 2

A
p
p
 3

A
p
p
 4

▪ Make it simple

• Allow wide usage on different platforms (e.g., FPGA)

▪ Enable extensions

• So special devices can exploit enhanced capabilities

Function Input Output

snapi_mq_create devname, mq_params mq

snapi_mq_connect mq -

snapi_mq_listen mq -

snapi_mq_send mq, msg, size -

snapi_mq_recv mq msg, size

snapi_mq_close mq -

snapi_mq_reg_mr mq, addr, size mr

snapi_mq_put mq, size, src_mr, dst_mr handle

snapi_mq_get mq, size, dst_mr, src_mr handle

snapi_mq_test mq, handle status

snapi_mq_dereg_mr mr -

Thank You

