
UCF Consortium Project

Unified Communication X (UCX)

ISC 2019

© 2018 UCF Consortium 2

UCF Consortium

 Mission:
• Collaboration between industry, laboratories, and academia to create production grade communication

frameworks and open standards for data centric and high-performance applications

 Projects
• UCX – Unified Communication X

• Open RDMA

 Board members
• Jeff Kuehn, UCF Chairman (Los Alamos National Laboratory)

• Gilad Shainer, UCF President (Mellanox Technologies)

• Pavel Shamis, UCF treasurer (ARM)

• Brad Benton, Board Member (AMD)

• Duncan Poole, Board Member (NVIDIA)

• Pavan Balaji, Board Member (Argonne National Laboratory)

• Sameh Sharkawi, Board Member (IBM)

• Dhabaleswar K. (DK) Panda, Board Member (Ohio State University)

• Steve Poole, Board Member (Open Source Software Solutions)

© 2018 UCF Consortium 3

UCX - History

LA

MPI

MXM

Open

MPI

2000 2004

PAMI

2010

UCX

2011 2012

UCCS

A new project based

on concept and ideas

from multiple

generation of HPC

networks stack

• Performance

• Scalability

• Efficiency

• Portability

Modular

Architecture

APIs, context,

thread safety,

etc.

APIs, software

infrastructure

optimizations

Network

Layers

APIs, Low-level

optimizations

Decades of community and

industry experience in

development of HPC network

software

© 2018 UCF Consortium 4

UCX High-level Overview

© 2018 UCF Consortium 5

UCX Framework

 UCX is a framework for network APIs and stacks

 UCX aims to unify the different network APIs, protocols and implementations into a single framework

that is portable, efficient and functional

 UCX doesn’t focus on supporting a single programming model, instead it provides APIs and

protocols that can be used to tailor the functionalities of a particular programming model efficiently

 When different programming paradigms and applications use UCX to implement their functionality, it

increases their portability. As just implementing a small set of UCX APIs on top of a new hardware

ensures that these applications can run seamlessly without having to implement it themselves

© 2018 UCF Consortium 6

UCX Development Status

© 2018 UCF Consortium 7

Annual Release Schedule

• v1.6.0 - April '19

• v1.7.0 - August '19

• v1.8.0 - December '19

© 2018 UCF Consortium 8

UCX at Scale

© 2018 UCF Consortium 9

UCX Portability

 Support for x86_64, Power 8/9, Arm v8

 Runs on Servers, Raspberry PI like platforms, SmartNIC, Nvidia Jetson platforms, etc.

NVIDIA Jetson

Arm ThunderX2

Bluefield SmartNIC

Odroid C2

© 2018 UCF Consortium 10

RECENT DEVELOPMENT v1.5.x

 UCP emulation layer (atomics, rma)

 Non-blocking API for all one-sided operations

 Client/server connection establishment API

 Malloc hooks using binary instrumentation instead of symbol override

 Statistics for UCT tag API

 GPU-to-Infiniband HCA affinity support based on locality/distance (PCIe)

 GPU - Support for stream API and receive side pipelining

© 2018 UCF Consortium 11

RECENT DEVELOPMENT v1.6.x

 AMD GPU ROCm transport re-design: support for managed memory, direct copy, ROCm GDR

 Modular architecture for UCT transports

 Random scheduling policy for DC transport

 OmniPath support (over verbs)

 Optimized out-of-box settings for multi-rail

 Support for PCI atomics with IB transports

 Reduced UCP address size for homogeneous environments

© 2018 UCF Consortium 12

Coming Soon !

Python bindings ! + Integration

with Dask and Rapids AI

Java bindings ! + Integration with

SparkRDMA

 iWARP support

GasNET over UCX

Collectives

 FreeBSD support

MacOS support

Moving CI to Jenkins and Azure

Pipelines

 TCP performance optimizations

Hardware tag matching

optimizations

© 2018 UCF Consortium 13

UCX Machine Layer in Charm++

© 2018 UCF Consortium 14

UCX Machine Layer in Charm++

 Charm++ is an object-oriented and message-driven parallel programming model with an adaptive

runtime system that enables high-performance applications to scale.

 The Low-level Runtime System (LRTS) is a thin software layer in the Charm++ software stack

that abstracts specific networking functionality, which supports uGNI, PAMI, Verbs, MPI, etc.

 UCX is a perfect fit for Charm++ machine layer:

• Just ~1000 LoC is needed to implement all LRTS APIs (MPI takes ~2700 LoC, Verbs takes ~8000LoC)

• UCX provides ultra low latency and high bandwidth sitting on top of RDMA Verbs stack

• UCX provides much less intrusive and close-to hardware API for one-sided communications than MPI

© 2018 UCF Consortium 15

Charm++ over UCX (Performance Evaluations)

 Up to 63% better than Intel MPI

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

1

10

100

1,000

u
se

c
(l

o
w

e
r

is
 b

e
tt

e
r)

Message Size

UCX vs. Intel MPI
(Charm++ pingpong, regular send)

UCX Intel MPI UCX vs Intel MPI (%)

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

1

10

100

1,000

u
se

c
(l

o
w

er
 is

 b
et

te
r)

Message Size

UCX vs. OpenMPI
(Charm++ pingpong, regular send)

UCX OpenMPI UCX vs OpenMPI (%)

 Up to 15% better than Open MPI (thru UCX pml)

© 2018 UCF Consortium 16

Charm++ over UCX (Performance Evaluations)

 4% improvement over Intel MPI with NAMD

(STMV public input, 40000 steps)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

1

10

100

1,000

10,000

u
se

c
(l

o
w

e
r

is
 b

e
tt

e
r)

Message Size

UCX vs. Verbs
(Charm++ pingpong, regular send)

UCX Verbs UCX vs Verbs (%)

4%

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

Intel MPI UCX

W
a

ll
C

lo
c
k

,
s

e
c

 (
lo

w
e

r
is

 b
e
tt

e
r)

NAMD: STMV 40000 Steps

NAMD 2.13 (master)
(STMV, 16 nodes, SKL 2.0GHz, HDR 100, 640 PPN)

 Up to 85% better than Verbs

UCX Support in MPICH

Yanfei Guo

Assistant Computer Scientist

Argonne National Laboratory

Email: yguo@anl.gov

mailto:yguo@anl.gov

MPICH layered structure: CH4

MPI Layer

Platform
independent code
• Collectives
• Communicator

management

ucx ofi portals4

“Netmods”
• Provide all functionality either

natively, or by calling back to
“generic” implementation

CH4

SHM

posix xpmem cma

“Shmmods”
• Implements some mandatory

functionality
• Can override any amount of

optional functionality (e.g. better
bcast, better barrier)

CH4 Generic

“Generic”
• Packet headers +

handlers

UCX BoF @ ISC 2019 18

Benefit of using UCX in MPICH

 Separating general optimizations and device specific optimizations

– Lightweight and high-performance communication

• Native communication support

– Simple and easy to maintain

– MPI can benefit from new hardware quicker

 Better hardware support

– Accelerated verbs with Mellanox hardware

– Support for GPUs

UCX BoF @ ISC 2019 19

MPICH/UCX with Accelerated Verbs

 UCX_TLS=rc_mlx5,cm

 Lower overhead

– Low latency

– Higher message rate

UCX BoF @ ISC 2019 20

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

M
es

sa
ge

R
at

e

Message Size

Message Rate

Accel Verbs

OSU Latency: 0.99us
OSU BW: 12064.12 MB/s
Argonne JLSE Thing Cluster
- Intel E5-2699v3 @ 2.3 GHz
- Connect-X 4 EDR
- HPC-X 2.2.0, OFED 4.4-2.0.7

MPICH/UCX with Accelerated Verbs

UCX BoF @ ISC 2019 21

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

La
te

n
cy

(u
s)

Message Size

pt2pt latency

Accel Verbs

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

La
te

n
cy

(u
s)

Message Size

MPI_Get Latency

Accel Verbs

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

La
te

n
cy

(u
s)

Message Size

MPI_Put Latency

Accel Verbs

MPICH/UCX with HCOLL

UCX BoF @ ISC 2019 22

0

200

400

600

800

1000

1200

La
te

n
cy

(u
s)

Message Size

MPI_Allreduce Latency

HCOLL MPICH

Argonne JLSE Thing Cluster
- Intel E5-2699v3 @ 2.3 GHz
- Connect-X 4 EDR
- HPC-X 2.2.0, OFED 4.4-2.0.7

6 nodes, ppn=1

UCX Support in MPICH

 UCX Netmod Development

– MPICH Team

– Mellanox

– NVIDIA

 MPICH 3.3.1 just released

– Includes an embedded UCX 1.5.0

 Native path

– pt2pt (with pack/unpack callbacks for non-contig buffers)

– contiguous put/get rma for win_create/win_allocate windows

 Emulation path is CH4 active messages (hdr + data)

– Layered over UCX tagged API

 Not yet supported

– MPI dynamic processes

UCX BoF @ ISC 2019 23

Hackathon on MPICH/UCX

 Earlier Hackathons with Mellanox

– Full HCOLL and UCX integration in MPICH 3.3

• Including HCOLL non-contig datatypes

– MPICH CUDA support using UCX and HCOLL, tested and documented

• https://github.com/pmodels/mpich/wiki/MPICH-CH4:UCX-with-CUDA-support

– Support for FP16 datatype (non-standard, MPIX)

– IBM XL and ARM HPC Compiler support

– Extended UCX RMA functionality, under review

• https://github.com/pmodels/mpich/pull/3398

 Upcoming hackathons with Mellanox and NVIDIA

UCX BoF @ ISC 2019 24

https://github.com/pmodels/mpich/wiki/MPICH-CH4:UCX-with-CUDA-support
https://github.com/pmodels/mpich/pull/3398

Upcoming plans

 Native UCX atomics

– Enable when user supplies certain info hints

– https://github.com/pmodels/mpich/pull/3398

 Extended CUDA support

– Handle non-contig datatypes

– https://github.com/pmodels/mpich/pull/3411

– https://github.com/pmodels/mpich/issues/3519

 Better MPI_THREAD_MULTIPLE support

– Utilizing multiple workers (Rohit looking into this now)

 Extend support for FP16

– Support for C _Float16 available in some compilers (MPIX_C_FLOAT16)

– Missing support when GPU/Network support FP16 but CPU does not

UCX BoF @ ISC 2019 25

https://github.com/pmodels/mpich/pull/3398
https://github.com/pmodels/mpich/pull/3411
https://github.com/pmodels/mpich/issues/3519

Enhancing MPI Communication using
Accelerated Verbs and Tag Matching:

The MVAPICH Approach

Dhabaleswar K. (DK) Panda

The Ohio State University

E-mail: panda@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~panda

Talk at UCX BoF (ISC ‘19)

by

http://www.cse.ohio-state.edu/~panda

Network Based Computing Laboratory ISC’19

Introduction, Motivation, and Challenge

• HPC applications require high-performance, low overhead data paths that provide

– Low latency

– High bandwidth

– High message rate

• Hardware Offloaded Tag Matching

• Different families of accelerated verbs available

– Burst family

• Accumulates packets to be sent into bursts of single SGE packets

– Poll family

• Optimizes send completion counts

• Receive completions for which only the length is of interest

• Completions that contain the payload in the CQE

• Can we integrate accelerated verbs and tag matching support in UCX into existing HPC

middleware to extract peak performance and overlap?

Network Based Computing Laboratory ISC’19

The MVAPICH Approach

High Performance Parallel Programming Models

Message Passing Interface
(MPI)

PGAS
(UPC, OpenSHMEM, CAF, UPC++)

Hybrid --- MPI + X
(MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime
Diverse APIs and Mechanisms

Point-to-

point

Primitives

Collectives

Algorithms

Energy-

Awareness

Remote

Memory

Access

I/O and

File Systems

Fault

Tolerance
Virtualization

Active

Messages
Job Startup

Introspectio

n & Analysis

Support for Modern Networking Technology
(InfiniBand, iWARP, RoCE, Omni-Path)

Transport Protocols Modern Interconnect Features

RC XRC UD DC UMR ODP
SR-

IOV

Multi

Rail

Accelerated Verbs Family*

Burst Poll

Modern Switch Features

Multicast SHARP

* Upcoming

Tag

Match

Network Based Computing Laboratory ISC’19

Verbs-level Performance: Message Rate

0

2

4

6

8

10

12

1 8 64 512 4096

M
ill

io
n

 M
es

sa
ge

s
/

se
co

n
d

Message Size (Bytes)

Read

regular acclerated

0

2

4

6

8

10

12

1 8 64 512 4096

M
ill

io
n

 M
es

sa
ge

s
/

se
co

n
d

Message Size (Bytes)

Write

regular acclerated

0

2

4

6

8

10

12

1 8 64 512 4096

M
ill

io
n

 M
es

sa
ge

s
/

se
co

n
d

Message Size (Bytes)

Send

regular acclerated

ConnectX-5 EDR (100 Gbps), Intel Broadwell E5-2680 @ 2.4 GHz
MOFED 4.2-1, RHEL-7 3.10.0-693.17.1.el7.x86_64

7.41
8.05

8.97
8.73

9.66 10.2010.47

Network Based Computing Laboratory ISC’19

Verbs-level Performance: Bandwidth

10

100

1000

2 8 32 128 512

M
ill

io
n

 B
yt

es
 /

 s
ec

o
n

d

Message Size (Bytes)

Read

regular

acclerated

ConnectX-5 EDR (100 Gbps), Intel Broadwell E5-2680 @ 2.4 GHz
MOFED 4.2-1, RHEL-7 3.10.0-693.17.1.el7.x86_64

12.21

16.39

10

100

1000

2 8 32 128 512

M
ill

io
n

 B
yt

es
 /

 s
ec

o
n

d

Message Size (Bytes)

Write

regular

acclerated

10

100

1000

2 8 32 128 512

M
ill

io
n

 B
yt

es
 /

 s
ec

o
n

d

Message Size (Bytes)

Send

regular

acclerated

14.72

18.35

14.13

16.10

Network Based Computing Laboratory ISC’19

• Offloads the processing of point-to-point MPI messages

from the host processor to HCA

• Enables zero copy of MPI message transfers

– Messages are written directly to the user's buffer without extra

buffering and copies

• Provides rendezvous progress offload to HCA

– Increases the overlap of communication and computation

43

Hardware Tag Matching Support

Network Based Computing Laboratory ISC’19 44

Impact of Zero Copy MPI Message Passing using HW Tag
Matching

0

50

100

150

200

250

300

350

400

32K 64K 128K 256K 512K 1M 2M 4M

La
te

n
cy

 (
u

s)

Message Size (byte)

osu_latency

Rendezvous Message Range

MVAPICH2 MVAPICH2+HW-TM

0

1

2

3

4

5

6

7

8

0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K

La
te

n
cy

 (
u

s)

Message Size (byte)

osu_latency

Eager Message Range

MVAPICH2 MVAPICH2+HW-TM

Removal of intermediate buffering/copies can lead up to 35% performance

improvement in latency of medium messages

35%

Network Based Computing Laboratory ISC’19 45

Impact of Rendezvous Offload using HW Tag Matching

0

10000

20000

30000

40000

50000

60000

70000

16K 32K 64K 128K 256K 512K

La
te

n
cy

 (
u

s)

Message Size (byte)

osu_iscatterv

1,280 Processes

MVAPICH2 MVAPICH2+HW-TM

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

16K 32K 64K 128K 256K 512K

La
te

n
cy

 (
u

s)

Message Size (byte)

osu_iscatterv

640 Processes

MVAPICH2 MVAPICH2+HW-TM

The increased overlap can lead to 1.8X performance improvement in total

latency of osu_iscatterv

1.7 X 1.8 X

Network Based Computing Laboratory ISC’19

• Complete designs are being worked out

• Will be available in the future MVAPICH2 releases

46

Future Plans

June, 2019

UCX CUDA ROADMAP UPDATE

48

LEVERAGING CUDA & GPU DIRECT
CUDA-awareness in UCX

Mellanox MPI effort is PML UCX

MPICH and OpenMPI use UCX

Move CUDA-related features to UCX

GPU-accelerated Data Science projects
under RAPIDS starting to leverage UCX
directly

Open MPI

OB1 PML
CUDA aware

openib,

smcuda BTL
CUDA aware

UCX PML / OSC

UCX
CUDA aware

49

CURRENT SUPPORT
Code contributions from Mellanox and NVIDIA

GPUDirectRDMA + GDRCopy for inter-node transfers

CUDA-IPC + GDRCopy for intra-node transfers

Pointer cache through interception mechanisms; CUDA-IPC mapping cache

Managed memory support

Automatic HCA selection based on GPU-affinity (UCX 1.5 release)

Python-bindings for UCX (ucx-py, https://github.com/rapidsai/ucx-py)

https://github.com/rapidsai/ucx-py

50

UCX-CUDA PERFORMANCE
Results with 2 DGX-1 nodes: approach peak with big enough buffers

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 4 8 16 32 64 128 256 512 1k 2k 4k

L
a
te

n
c
y
 (

u
s)

Message size (bytes)

ucx perf short messages

ping-pong

0

5000

10000

15000

20000

25000

8k 16k 32k 64k 128k 256k 512k 1M 2M 4M

B
a
n
d
w

id
th

 (
G

B
/
s)

Message Size (bytes)

ucx perf large messages

unidirectional bidirectional

51

UCX-PY PERFORMANCE
Results with 2 DGX-1 nodes: approach peak with big enough buffers

0

2

4

6

8

10

12

10MB 20MB 40MB 80MB 160MB 320MB

B
a
n
d
w

id
th

 G
B
/
s

Message Size

ucx-py perf: blocking mode

cupy native

52

UPCOMING TARGETS

Short term:

3-stage pipeline optimizations (for imbalanced GPU-HCA configurations)

Pipelining over NVLINK path (for managed memory; memory footprint)

Automatic HCA selection based on GPU-affinity (general availability)

Long term:

Persistent request support: memoize xfer info for repeated use

Non-contig Datatypes optimizations

One-sided UCX-CUDA; stream-based UCX operations

© 2018 UCF Consortium 53

Join the UCX Community

© 2018 UCF Consortium 54

Save the date !

 UCX F2F meeting is planed on the week of December 9

 3 days meeting

 Austin, TX

© 2018 UCF Consortium 55

UCXUnified Communication - X

Framework

WEB:

www.openucx.org

https://github.com/openucx/ucx

Mailing List:

https://elist.ornl.gov/mailman/listinfo/ucx-group

ucx-group@elist.ornl.gov

http://www.openucx.org/
https://github.com/openucx/ucx
https://elist.ornl.gov/mailman/listinfo/ucx-group
mailto:ucx-group@elist.ornl.gov

Thank You
The UCF Consortium is a collaboration between industry, laboratories,
and academia to create production grade communication frameworks
and open standards for data centric and high-performance
applications.

