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UCF Consortium

 Mission: 
• Collaboration between industry, laboratories, and academia to create production grade communication 

frameworks and open standards for data centric and high-performance applications

 Projects
• UCX – Unified Communication X

• Open RDMA

 Board members
• Jeff Kuehn, UCF Chairman (Los Alamos National Laboratory)

• Gilad Shainer, UCF President (Mellanox Technologies)

• Pavel Shamis, UCF treasurer (ARM)

• Brad Benton, Board Member (AMD)

• Duncan Poole, Board Member (NVIDIA)

• Pavan Balaji, Board Member (Argonne National Laboratory)

• Sameh Sharkawi, Board Member (IBM)

• Dhabaleswar K. (DK) Panda, Board Member (Ohio State University)

• Steve Poole, Board Member (Open Source Software Solutions)
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UCX High-level Overview
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UCX Framework

 UCX is a framework for network APIs and stacks

 UCX aims to unify the different network APIs, protocols and implementations into a single framework 

that is portable, efficient and functional

 UCX doesn’t focus on supporting a single programming model, instead it provides APIs and 

protocols that can be used to tailor the functionalities of a particular programming model efficiently

 When different programming paradigms and applications use UCX to implement their functionality, it 

increases their portability. As just implementing a small set of UCX APIs on top of a new hardware 

ensures that these applications can run seamlessly without having to implement it themselves
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UCX Development Status
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Annual Release Schedule

• v1.6.0 - April '19

• v1.7.0 - August '19

• v1.8.0 - December '19
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UCX at Scale
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UCX Portability 

 Support for x86_64, Power 8/9, Arm v8

 Runs on Servers, Raspberry PI like platforms, SmartNIC, Nvidia Jetson platforms, etc.

NVIDIA Jetson

Arm ThunderX2

Bluefield SmartNIC

Odroid C2



© 2018 UCF Consortium 10

RECENT DEVELOPMENT v1.5.x

 UCP emulation layer (atomics, rma)

 Non-blocking API for all one-sided operations

 Client/server connection establishment API

 Malloc hooks using binary instrumentation instead of symbol override

 Statistics for UCT tag API

 GPU-to-Infiniband HCA affinity support based on locality/distance (PCIe)

 GPU - Support for stream API and receive side pipelining
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RECENT DEVELOPMENT v1.6.x

 AMD GPU ROCm transport re-design: support for managed memory, direct copy, ROCm GDR

 Modular architecture for UCT transports

 Random scheduling policy for DC transport

 OmniPath support (over verbs)

 Optimized out-of-box settings for multi-rail

 Support for PCI atomics with IB transports

 Reduced UCP address size for homogeneous environments
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Coming Soon !

Python bindings ! + Integration 

with Dask and Rapids AI

Java bindings ! + Integration with 

SparkRDMA

 iWARP support

GasNET over UCX

Collectives

 FreeBSD support

MacOS support 

Moving CI to Jenkins and Azure 

Pipelines

 TCP performance optimizations

Hardware tag matching 

optimizations
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UCX Machine Layer in Charm++
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UCX Machine Layer in Charm++

 Charm++ is an object-oriented and message-driven parallel programming model with an adaptive 

runtime system that enables high-performance applications to scale.

 The Low-level Runtime System (LRTS) is a thin software layer in the Charm++ software stack 

that abstracts specific networking functionality, which supports uGNI, PAMI, Verbs, MPI, etc. 

 UCX is a perfect fit for Charm++ machine layer:

• Just ~1000 LoC is needed to implement all LRTS APIs (MPI takes ~2700 LoC, Verbs takes ~8000LoC)

• UCX provides ultra low latency and high bandwidth sitting on top of RDMA Verbs stack

• UCX provides much less intrusive and close-to hardware API for one-sided communications than MPI



© 2018 UCF Consortium 15

Charm++ over UCX (Performance Evaluations)

 Up to 63% better than Intel MPI
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 Up to 15% better than Open MPI (thru UCX pml)



© 2018 UCF Consortium 16

Charm++ over UCX (Performance Evaluations)

 4% improvement over Intel MPI with NAMD

(STMV public input, 40000 steps)
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UCX Support in MPICH

Yanfei Guo

Assistant Computer Scientist

Argonne National Laboratory

Email: yguo@anl.gov

mailto:yguo@anl.gov


MPICH layered structure: CH4

MPI Layer

Platform 
independent code
• Collectives
• Communicator 

management

ucx ofi portals4

“Netmods”
• Provide all functionality either 

natively, or by calling back to 
“generic” implementation

CH4

SHM

posix xpmem cma

“Shmmods”
• Implements some mandatory 

functionality
• Can override any amount of 

optional functionality (e.g. better 
bcast, better barrier)

CH4 Generic

“Generic”
• Packet headers + 

handlers
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Benefit of using UCX in MPICH

 Separating general optimizations and device specific optimizations

– Lightweight and high-performance communication

• Native communication support

– Simple and easy to maintain

– MPI can benefit from new hardware quicker

 Better hardware support

– Accelerated verbs with Mellanox hardware

– Support for GPUs

UCX BoF @ ISC 2019 19



MPICH/UCX with Accelerated Verbs

 UCX_TLS=rc_mlx5,cm

 Lower overhead

– Low latency

– Higher message rate
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MPICH/UCX with Accelerated Verbs
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MPICH/UCX with HCOLL
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UCX Support in MPICH

 UCX Netmod Development

– MPICH Team

– Mellanox

– NVIDIA

 MPICH 3.3.1 just released

– Includes an embedded UCX 1.5.0

 Native path

– pt2pt (with pack/unpack callbacks for non-contig buffers)

– contiguous put/get rma for win_create/win_allocate windows

 Emulation path is CH4 active messages (hdr + data)

– Layered over UCX tagged API

 Not yet supported

– MPI dynamic processes
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Hackathon on MPICH/UCX

 Earlier Hackathons with Mellanox

– Full HCOLL and UCX integration in MPICH 3.3

• Including HCOLL non-contig datatypes

– MPICH CUDA support using UCX and HCOLL, tested and documented

• https://github.com/pmodels/mpich/wiki/MPICH-CH4:UCX-with-CUDA-support

– Support for FP16 datatype (non-standard, MPIX)

– IBM XL and ARM HPC Compiler support

– Extended UCX RMA functionality, under review

• https://github.com/pmodels/mpich/pull/3398

 Upcoming hackathons with Mellanox and NVIDIA
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https://github.com/pmodels/mpich/wiki/MPICH-CH4:UCX-with-CUDA-support
https://github.com/pmodels/mpich/pull/3398


Upcoming plans

 Native UCX atomics

– Enable when user supplies certain info hints

– https://github.com/pmodels/mpich/pull/3398

 Extended CUDA support

– Handle non-contig datatypes

– https://github.com/pmodels/mpich/pull/3411

– https://github.com/pmodels/mpich/issues/3519

 Better MPI_THREAD_MULTIPLE support

– Utilizing multiple workers (Rohit looking into this now)

 Extend support for FP16

– Support for C _Float16 available in some compilers (MPIX_C_FLOAT16)

– Missing support when GPU/Network support FP16 but CPU does not
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Enhancing MPI Communication using 
Accelerated Verbs and Tag Matching:

The MVAPICH Approach

Dhabaleswar K. (DK) Panda
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http://www.cse.ohio-state.edu/~panda

Talk at UCX BoF (ISC ‘19)

by

http://www.cse.ohio-state.edu/~panda
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Introduction, Motivation, and Challenge

• HPC applications require high-performance, low overhead data paths that provide

– Low latency

– High bandwidth

– High message rate

• Hardware Offloaded Tag Matching

• Different families of accelerated verbs available

– Burst family

• Accumulates packets to be sent into bursts of single SGE packets

– Poll family

• Optimizes send completion counts

• Receive completions for which only the length is of interest

• Completions that contain the payload in the CQE

• Can we integrate accelerated verbs and tag matching support in UCX into existing HPC 

middleware to extract peak performance and overlap?
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The MVAPICH Approach

High Performance Parallel Programming Models

Message Passing Interface
(MPI)

PGAS
(UPC, OpenSHMEM, CAF, UPC++)

Hybrid --- MPI + X
(MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime
Diverse APIs and Mechanisms

Point-to-

point 

Primitives

Collectives 

Algorithms

Energy-

Awareness

Remote 

Memory 

Access

I/O and

File Systems

Fault

Tolerance
Virtualization

Active 

Messages
Job Startup

Introspectio

n & Analysis

Support for Modern Networking Technology
(InfiniBand, iWARP, RoCE, Omni-Path)

Transport Protocols Modern Interconnect Features

RC XRC UD DC UMR ODP
SR-

IOV

Multi 

Rail

Accelerated Verbs Family*

Burst Poll

Modern Switch Features

Multicast SHARP

* Upcoming

Tag 

Match
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Verbs-level Performance: Message Rate
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Verbs-level Performance: Bandwidth
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• Offloads the processing of point-to-point MPI messages 

from the host processor to HCA

• Enables zero copy of MPI message transfers

– Messages are written directly to the user's buffer without extra 

buffering and copies

• Provides rendezvous progress offload to HCA

– Increases the overlap of communication and computation

43

Hardware Tag Matching Support
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Impact of Zero Copy MPI Message Passing using HW Tag 
Matching
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improvement in latency of medium messages
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Impact of Rendezvous Offload using HW Tag Matching
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• Complete designs are being worked out

• Will be available in the future MVAPICH2 releases

46

Future Plans



June, 2019

UCX CUDA ROADMAP UPDATE
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LEVERAGING CUDA & GPU DIRECT
CUDA-awareness in UCX

Mellanox MPI effort is PML UCX

MPICH and OpenMPI use UCX 

Move CUDA-related features to UCX

GPU-accelerated Data Science projects 
under RAPIDS starting to leverage UCX 
directly

Open MPI

OB1 PML
CUDA aware

openib, 

smcuda BTL
CUDA aware

UCX PML / OSC

UCX
CUDA aware
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CURRENT SUPPORT
Code contributions from Mellanox and NVIDIA

GPUDirectRDMA + GDRCopy for inter-node transfers

CUDA-IPC + GDRCopy for intra-node transfers

Pointer cache through interception mechanisms; CUDA-IPC mapping cache 

Managed memory support

Automatic HCA selection based on GPU-affinity (UCX 1.5 release)

Python-bindings for UCX (ucx-py, https://github.com/rapidsai/ucx-py)

https://github.com/rapidsai/ucx-py
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UCX-CUDA PERFORMANCE
Results with 2 DGX-1 nodes: approach peak with big enough buffers
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UCX-PY PERFORMANCE
Results with 2 DGX-1 nodes: approach peak with big enough buffers
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UPCOMING TARGETS

Short term:

3-stage pipeline optimizations (for imbalanced GPU-HCA configurations)

Pipelining over NVLINK path (for managed memory; memory footprint)

Automatic HCA selection based on GPU-affinity (general availability)

Long term:

Persistent request support: memoize xfer info for repeated use

Non-contig Datatypes optimizations

One-sided UCX-CUDA; stream-based UCX operations
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Join the UCX Community
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Save the date ! 

 UCX F2F meeting is planed on the week of December 9

 3 days meeting

 Austin, TX
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UCXUnified Communication - X

Framework

WEB: 

www.openucx.org

https://github.com/openucx/ucx

Mailing List: 

https://elist.ornl.gov/mailman/listinfo/ucx-group

ucx-group@elist.ornl.gov

http://www.openucx.org/
https://github.com/openucx/ucx
https://elist.ornl.gov/mailman/listinfo/ucx-group
mailto:ucx-group@elist.ornl.gov


Thank You
The UCF Consortium is a collaboration between industry, laboratories, 
and academia to create production grade communication frameworks 
and open standards for data centric and high-performance 
applications.


