
Designing	and	Developing	Performance	
Portable	Network	Codes	

Pavel	Shamis	(Pasha),	ARM	Research	
Alina	Sklarevich,	Mellanox	Technologies	

Swen	Boehm,	Oak	Ridge	NaEonal	Laboratory	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Outline	
•  Modern	Interconnect	Technologies	

–  Overview	of	exisEng	technologies	
–  SoSware	interfaces	
–  Unified	CommunicaEon	X	Framework	

•  UCX	programming	by	example	
–  OpenMPI	
–  OpenSHMEM	

•  UCX	Examples	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

MODERN	INTERCONNECT	
TECHNOLOGIES	

Pavel	Shamis	(Pasha),	ARM	Research	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Interconnects	
•  Interconnects	are	everywhere:	System-on-

Chip,	chip-to-chip,	rack,	top-of-the-rack,	wide	
area	networks	

	

This	
Tutorial	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Ethernet	
•  Used	Everywhere	
•  Typically	used	in	combinaEon	with	TCP/UD/IP	
•  Socket	API	
•  10/25/50/100	Gb/s	
•  Not	covered	in	this	tutorial	
•  What	is	covered		?	–	HPC	Interconnects	
	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

•  Not	that	“special”	anymore	
–  Commodity	CPUs	
–  Commodity	Accelerators	
–  Commodity	Memories	

•  SEll	“somewhat”	special	
–  Form	factor	
–  System	density		
–  Cooling	technologies	(warm	water,	liquid	cooling	,etc.)	

•  The	“secret	sauce”	–	Interconnect	
–  Fujitsu	Tofu,	IBM	Torus,	SGI	NumaLink,	Cray	Aries/Gemini,	TH	Express-2,	InfiniBand		
–  SoSware	stack	–	MPI	+	OpenMP/OpenACC	

Modern	HPC	Systems	

h"p://www.top500.org	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

•  Low	Latency	(<	1	usec)	
•  High	Bandwidth	(>	100	Gb/s)	
•  High	injecEon	rates	(>	150M	messages/sec)		
•  Network	topologies	and	adapEve	rouEng		
•  Scalability	–	efficient	support	for	communicaEon	with	millions	of	cores	
•  OS	bypass	(direct	access	to	the	hardware	from	the	user	level)	
•  Remote	Direct	Memory	Access	(avoid	memory	copies	in	communicaEon	stack)	

–  Read,	Write,	Atomics	
•  Offloads	

–  CollecEve	operaEons,	support	for	non-conEguous	data,	GPU-Direct,	Peer-Direct,	tag-matching,	etc.	
•  Highly	opEmized	network	soSware	stack	(MPI	+	OpenMP/ACC,	PGAS,	etc.)	

–  Low	soSware	overheads	0.6-1.2	micro-sec	(MPI	latency)	
–  Low	memory	footprint	(avoid	O(n)	memory	allocaEons)	
–  Performance	portable	APIs	

The	“secret	sauce”		

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

OS	Bypass	

ApplicaEon	

Kernel	

Hardware	

IniEalizaEon/Query	
Send	
Receive	

ApplicaEon	

Kernel	

Hardware	

IniEalizaEon	
Query	

CommunicaEon	
direcEves	

System	
Call	

No	OS-bypass	 With	OS-bypass	

PCIe	Doorbells	 PCIe	Doorbells	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

RDMA	

Data	Buffer	

Socket	

TCP/IP	

Driver	

NIC	

copy	

copy	

copy	

copy	

DMA	

Data	Buffer	

Socket	

TCP/IP	

Driver	

NIC	

copy	

copy	

copy	

copy	

DMA	

ApplicaEon	 ApplicaEon	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

•  RDMA	Read	and	Write	
•  Send	/	Receive	

–  Send	/	Receive	with	TAG	matching	

•  Atomic	OperaEons	on	Remote	Memory	
–  SWAP	
–  CSWAP	
–  ADD	
–  XOR	

•  Group	CommunicaEon	direcEves	
–  Reduce,	Allreduce,	Scaler,	Gather,	AlltoAll	

Advanced	SemanEcs	

Socket	API:	
send()	and	recv(),	or	write()	and	
read(),	or	sendto()	and	
recvfrom()	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Interconnects	Overview	
InfiniBand	 RoCE	 iWarp	 RapidIO	 NVIDIA	

NVLINK	
Intel	
OmniPath	

Bull	BXI	 Extoll	

Standard	 Open	
IBTA	

Open	
IBTA	

Open	
IETF	

Open	
RapidIO	

Proprietary	 Proprietary	 Proprietary	 Proprietary	

ProducEon		
BW	(Mb/s)	

100Gb/s	 100Gb/s	 40Gb/s	 40Gb/s	 640Gb/s	–	
1600Gb/s	

100Gb/s	 100Gb/s	 100Gb/s	

Latency	(us)	 0.6	 0.98	 3.4	 <1	 <1	 <1	 <1	 0.6-08	

Hardware	
Terminated	
	

No	 No	 No	 Yes	 Yes	 No	 No	 No	

Offload	 HW/SW	 HW/SW	 HW/SW	 HW	 HW	 HW/SW	 HW/SW	(?)	 HW/SW	(?)	

RDMA	 Yes	 Yes	 Yes	 Yes	 ?	 Yes	 Yes	 Yes	

Market	 HPC,	Data	
Center	

Data	
Center,	
HPC	

Data	
Center,	
HPC	

Tele,	
Aero,	
Data	
Center	

HPC,		
Machine	
Learning	

HPC,	Data	
Center	
	

HPC	 HPC	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Typical	HPC	SoSware	Stack	
•  ApplicaEons	

–  CAMD,	NAMD,	Fluent,	Lsdyna,	etc.	
•  Programming	models	

–  MPI,	UPC,	OpenSHMEM/SHMEM,	Co-array	
Fortran,	X10,	Chapel	

•  Middleware	
–  GasNET,	MXM,	ARMCI,	etc.	
–  Part	of	programming	model	implementaEon	
–  SomeEmes	“merged”	with	driver	

•  Driver	
–  OFA	Verbs,	Cray	uGNI,	etc.	

•  Hardware	
–  InfiniBand,	Cray	Aries,	Intel	OmniPath,	BXI,	

etc.	

Parallel Applications

Parallel Programming Models

Communication
Middleware

Network Driver

Network
Hardware

Transport	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Why	we	care	about	soSware	stack	?			

•  Network	latency	is	a	key	
– Sub	Micro	is	typical	for	HPC	
Network	

•  SoSware	stack	overheads	

Open Fabrics
Driver

Communication
Middleware

UCCS

OpenSHMEM
& Parallel

Programing
Models

OpenSHMEM
& Parallel

Programing
Models

100ns

550ns

70ns

RMA PUT

CriEcal	Path	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Network	Programming		
Interfaces	(beyond	sockets)	

•  Open	Fabric	Alliance:	Verbs,	Udapl,	SDP,	libfabrics,	…	
•  Research:	Portals,	CCI,	UCCS	
•  Vendors:	Mellanox	MXM,	Cray	uGNI/DMAPP,	Intel	
PSM,	Atos	Portals,	IBM	PAMI,	OpenMX	

•  Programming	model	driven:	MVAPICH-X,	GasNET,	
ARMCI		

•  Enterprise	App	oriented:	OpenDataPlane,	DPDK,	
Accelio	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Vendors	Specific	APIs	
Pros	
•  ProducEon	Quality	
•  OpEmized	for	Performance	
•  Support	and	maintenance		

Cons	
•  OSen	“vendor”	locked	
•  OpEmized	for	parEcular	

technology	
•  Co-design	lags	behind		

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Open	Source	APIs	
Pros	
•  Community	(a.k.a.	user)	

driven	
•  Easy	to	modify	and	extend	
•  Good	for	research	

Cons	
•  Typically	not	as	opEmized	

as	commercial/vendor	
soSware		

•  Maintenance	is	challenge		

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Research	API	
Pros	
•  InnovaEve	and	forward	

looking	
–  A	lot	of	good	ideas	for	“free”	

Cons	
•  Support,	support,	support	
•  Typically	narrow	focus	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Network	Programming		
Interfaces	

Vendor	Specific	
Middleware		

	
	

Open	Source	
Middleware	

	

General	Purpose	
Middleware	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

UCX	

Unified	CommunicaEon	-	X	
Framework	
	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

History	

MXM
●  Developed by Mellanox Technologies
●  HPC communication library for InfiniBand

devices and shared memory
●  Primary focus: MPI, PGAS

PAMI
●  Developed by IBM on BG/Q, PERCS, IB

VERBS
●  Network devices and shared memory
●  MPI, OpenSHMEM, PGAS, CHARM++, X10
●  C++ components
●  Aggressive multi-threading with contexts
●  Active Messages
●  Non-blocking collectives with hw accleration

support

Decades	of	community	and	industry	
experience	in	development	of	HPC	

soNware	

UCCS	
●  Developed	by	ORNL,	UH,	UTK	
●  Originally	based	on	Open	MPI	BTL	and	OPAL	

layers	
●  HPC	communicaEon	library	for	InfiniBand,	

Cray	Gemini/Aries,	and	shared	memory	
●  Primary	focus:	OpenSHMEM,	PGAS	
●  Also	supports:	MPI	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

What	we	don’t	want	to	do…	

Borrowed	from:	h"ps://xkcd.com/927	
©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

UCX	Framework	Mission	
•  CollaboraEon	between	industry,	laboratories,	and	academia		
•  Create	open-source	producEon	grade	communicaEon	framework	for	HPC	applicaEons	
•  Enable	the	highest	performance	through	co-design	of	soSware-hardware	interfaces	
•  Unify	industry	-	naEonal	laboratories	-	academia	efforts	

Performance	oriented	
	

OpEmizaEon	for	low-soSware	
overheads	in	communicaEon	path	

allows	near	naEve-level	performance	

Community	driven	
	

CollaboraEon	between	industry,	
laboratories,	and	academia	

ProducPon	quality	
	

Developed,	maintained,	tested,	and	
used	by	industry	and	researcher	

community	

API	
	

Exposes	broad	semanEcs	that	target	
data	centric	and	HPC	programming	

models	and	applicaEons	

Research	
	

The	framework	concepts	and	ideas	are	
driven	by	research	in	academia,	

laboratories,	and	industry	

Cross	plaRorm	
	

Support	for	Infiniband,	Cray,	various	
shared	memory	(x86-64,	Power,		ARM),	

GPUs	

Co-design of Exascale Network APIs

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

A	CollaboraEon	Efforts		
•  Mellanox	co-designs	network	API	and	contributes	MXM	technology	

–  Infrastructure,	transport,	shared	memory,	protocols,	integraEon	with	
OpenMPI/SHMEM,	MPICH	

•  ORNL	co-designs	network	API	and	contributes	UCCS	project	
–  InfiniBand	opEmizaEons,	Cray	devices,	shared	memory	

•  LANL	co-designs	network	API	
•  ARM	co-designs	the	network	API	and	contributes	opEmizaEons	for	

ARM	eco-system	
•  NVIDIA	co-designs	high-quality	support	for	GPU	devices	

–  GPUDirect,	GDR	copy,	etc.	
•  IBM	co-designs	network	API	and	contributes	ideas	and	concepts	from	

PAMI	
•  UH/UTK	focus	on	integraEon	with	their	research	plauorms	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

What’s	new	about	UCX?	
•  Simple, consistent, unified API

•  Choosing between low-level and high-level API allows easy integration
with a wide range of applications and middleware.

•  Protocols and transports are selected by capabilities and performance
estimations, rather than hard-coded definitions.

•  Support thread contexts and dedicated resources, as well as fine-grained
and coarse-grained locking.

•  Accelerators are represented as a transport, driven by a generic “glue”
layer, which will work with all communication networks.

 ©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

UCX	Framework	

UC-S	for	Services	
	
This	framework	provides	
basic	infrastructure	for	
component	based	
programming,	memory	
management,		and	useful	
system	uEliEes	
	
FuncEonality:	
Plauorm	abstracEons,	data	
structures,	debug	faciliEes.	

UC-T	for	Transport	
	
Low-level	API	that	expose	
basic	network	operaEons	
supported	by	underlying	
hardware.	Reliable,	out-of-
order	delivery.	
	
	
FuncEonality:		
Setup	and	instanEaEon	of	
communicaEon	operaEons.	

UC-P	for	Protocols	
	
High-level	API	uses	UCT	
framework	to	construct	
protocols	commonly	found	
in	applicaEons	
	
FuncEonality:	
MulE-rail,	device	selecEon,	
pending	queue,	rendezvous,	
tag-matching,	soSware-
atomics,	etc.		
	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

A	High-level	Overview	

UC-T (Hardware Transports) - Low Level API
 RMA, Atomic, Tag-matching, Send/Recv, Active Message

Transport for InfiniBand VERBs
driver

RC UD XRC DCT

Transport for intra-node host memory communication

SYSV POSIX KNEM CMA XPMEM

Transport for
Accelerator Memory

communucation

GPU

Transport for
Gemini/Aries

drivers

GNI

UC-S
(Services)

Common utilities

UC-P (Protocols) - High Level API
Transport selection, cross-transrport multi-rail, fragmentation, operations not supported by hardware

Message Passing API Domain:
tag matching, randevouze

PGAS API Domain:
RMAs, Atomics

Task Based API Domain:
Active Messages

I/O API Domain:
Stream

Utilities Data
stractures

Hardware

MPICH, Open-MPI, etc. OpenSHMEM, UPC, CAF, X10,
Chapel, etc. Parsec, OCR, Legions, etc. Burst buffer, ADIOS, etc.

Applications
UC

X

Memory
Management

OFA Verbs Driver Cray Driver OS Kernel Cuda

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

ClarificaEons	
•  UCX	is	not	a	device	driver	
•  UCX	is	a	communicaEon	framework	

– Close-to-hardware	API	layer	
– Providing	an	access	to	hardware’s	capabiliEes	

•  UCX	relies	on	drivers	supplied	by	vendors	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Project	Management	
•  API	definiEons	and	changes	are	discussed	within	

developers	(mail-list,	github,	conf	call)	
•  PRs	with	API	change	have	to	be	approved	by	ALL	

maintainers	
•  PR	within	maintainer	“domain”	has	to	be	

reviewed	by	the	maintainer	or	team	member	
(Example:	Mellanox	reviews	all	IB	changes)	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Licensing	
•  BSD	3	Clause	license	
•  Contributor	License	Agreement	–	BSD	3	

based	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

UCX	Advisory	Board	
•  Arthur	Barney	Maccabe	(ORNL)	
•  Bronis	R.	de	Supinski	(LLNL)	
•  Donald	Becker	(NVIDIA)	
•  George	Bosilca	(UTK)	
•  Gilad	Shainer	(Mellanox	Technologies)	
•  Pavan	Balaji	(ANL)	
•  Pavel	Shamis	(ARM)	
•  Richard	Graham	(Mellanox	Technologies)	
•  Sameer	Kumar	(IBM)	
•  Sameh	Sharkawi	(IBM)	
•  Stephen	Poole	(Open	Source	SoSware	SoluEons)	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

UCP	-	Protocol	Layer	

UC-T (Hardware Transports) - Low Level API
 RMA, Atomic, Tag-matching, Send/Recv, Active Message

Transport for InfiniBand VERBs
driver

RC UD XRC DCT

Transport for intra-node host memory communication

SYSV POSIX KNEM CMA XPMEM

Transport for
Accelerator Memory

communucation

GPU

Transport for
Gemini/Aries

drivers

GNI

UC-S
(Services)

Common utilities

UC-P (Protocols) - High Level API
Transport selection, cross-transrport multi-rail, fragmentation, operations not supported by hardware

Message Passing API Domain:
tag matching, randevouze

PGAS API Domain:
RMAs, Atomics

Task Based API Domain:
Active Messages

I/O API Domain:
Stream

Utilities Data
stractures

Hardware

MPICH, Open-MPI, etc. OpenSHMEM, UPC, CAF, X10,
Chapel, etc. Parsec, OCR, Legions, etc. Burst buffer, ADIOS, etc.

Applications
UC

X

Memory
Management

OFA Verbs Driver Cray Driver OS Kernel Cuda

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

UCP	Protocol	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Protocol	Layer	
•  Selects	the	best	network	for	the	applicaEon	

–  Does	not	have	to	be	the	same	vendor	
•  OpEmized	by	default	

–  Protocols	are	opEmized	for	the	message	size	and	underlying	network	semanEcs	
–  Intelligent	fragmentaEon		

•  MulE-rail,	mulE-interconnect	communicaEon	
•  Emulates	unsupported	semanEcs	in	soSware	

–  No	“ifdefs”	in	user	code	
–  SoSware	atomics,	tag-matching,	etc.	

•  Abstracts	connecEon	setup	
•  Handles	99%	of	“corner”	cases	

–  Network	out	of	resources	
–  Reliability		
–  No	message	size	limit	
–  ….and	many	more	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

UCP	Objects	
•  ucp_context_h		

–  A	global	context	for	the	applicaEon.	For	example,	hybrid	MPI/
SHMEM	library	may	create	on	context	for	MPI,	and	another	for	
SHMEM.	

•  ucp_worker_h	
–  CommunicaEon	and	progress	engine	context.	One	possible	
usage	is	to	create	one	worker	per	thread.	

•  ucp_ep_h	
–  CommunicaEon	peer.	Used	to	iniEate	communicaEons	
direcEves	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

UCP	IniEalizaEon	
ucp_init	(const	ucp_params_t	∗	params,	const	ucp_config_t	∗	
config,	ucp_context_h	∗	context_p)	
	
	
	
This	rouEne	creates	and	iniEalizes	a	UCP	applicaEon	context.		
This	rouEne	checks	API	version	compaEbility,	then	discovers	the	
available	network	interfaces,	and	iniEalizes	the	network	
resources	required	for	discovering	of	the	network	and	memory	
related	devices.	This	rouEne	is	responsible	for	iniEalizaEon	all	
informaEon	required	for	a	parEcular	applicaEon	scope,	for	
example,	MPI	applicaEon,	OpenSHMEM	applicaEon,	etc.		
	
Related	rouEnes:	ucp_cleanup,	ucp_get_version	
	
	

ucp_context_h	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

UCP	IniEalizaEon	
ucs_status_t	ucp_worker_create	(ucp_context_h	context,	
ucs_thread_mode_t	thread_mode,	ucp_worker_h	∗worker_p)		
	
	
	
	
This	rouEne	allocates	and	iniEalizes	a	worker	object.	Each	worker	is	
associated	with	one	and	only	one	applicaEon	context.	In	the	same	Eme,	an	
applicaEon	context	can	create	mulEple	workers	in	order	to	enable	concurrent	
access	to	communicaEon	resources.	For	example,	applicaEon	can	allocate	a	
dedicated	worker	for	each	applicaEon	thread,	where	every	worker	can	be	
progressed	independently	of	others.		
	
Related	rouEnes:	ucp_worker_destroy,	ucp_worker_get_address,	
ucp_worker_release_address,	ucp_worker_progress,	ucp_worker_fence,	
ucp_worker_flush	
	
	
	
	
	
	

ucp_context_h	

ucp_worker_h	ucp_worker_h	ucp_worker_h	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

UCP	IniEalizaEon	
ucs_status_t	ucp_worker_get_address	(ucp_worker_h	
worker,	ucp_address_t	∗∗	address_p,	size_t	∗	
address_length_p)		
	
	
	
This	rouEne	returns	the	address	of	the	worker	object.	This	
address	can	be	passed	to	remote	instances	of	the	UCP	
library	in	order	to	to	connect	to	this	worker.	The	memory	
for	the	address	handle	is	allocated	by	this	funcEon,	and	
must	be	released	by	using	ucp_worker_release_address()	
rouEne.		

ucp_context_h	

ucp_worker_h	ucp_worker_h	ucp_worker_h	Ad
dr
es
s	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

UCP	IniEalizaEon	
ucs_status_t	ucp_ep_create	(ucp_worker_h	worker,	const	
ucp_address_t	∗	address,	ucp_ep_h	∗	ep_p)		
	
	
	
This	rouEne	creates	and	connects	an	endpoint	on	a	local	worker	for	a	
desEnaEon	address	that	idenEfies	the	remote	worker.	This	funcEon	
is	non-blocking,	and	communicaEons	may	begin	immediately	aSer	it	
returns.	If	the	connecEon	process	is	not	completed,	communicaEons	
may	be	delayed.	The	created	endpoint	is	associated	with	one	and	
only	one	worker.	
	
Related	rouEnes:		ucp_ep_flush,	ucp_ep_fence,	ucp_ep_destroy		

ucp_context_h	

ucp_worker_h	ucp_worker_h	ucp_worker_h	Ad
dr
es
s	

ucp_ep_h	

ucp_ep_h	

ucp_ep_h	
©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Out-of-band	
Address	
Exchange	

EnEty	A	

Context	

Worker	

Endpoint	

EnEty	B	

Context	

Worker	

UCP	API	

Endpoint	

EnEty	C	

Context	

Worker	

EnEty	D	

Context	

Worker	

Endpoint	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

UCP	Memory	Management	
ucs_status_t	ucp_mem_map	(ucp_context_h	context,	void	∗∗address_p,	size_t	length,	
unsigned	flags,	ucp_mem_h	∗memh_p)	
	
	
	
	
	
	
	
	
This	rouEne	maps	or/and	allocates	a	user-specified	memory	segment	with	UCP	
applicaEon	context	and	the	network	resources	associated	with	it.	If	the	applicaEon	
specifies	NULL	as	an	address	for	the	memory	segment,	the	rouEne	allocates	a	mapped	
memory	segment	and	returns	its	address	in	the	address_p	argument.	The	network	stack	
associated	with	an	applicaEon	context	can	typically	send	and	receive	data	from	the	
mapped	memory	without	CPU	intervenEon;	some	devices	and	associated	network	stacks	
require	the	memory	to	be	mapped	to	send	and	receive	data.	The	memory	handle	includes	
all	informaEon	required	to	access	the	memory	locally	using	UCP	rouEnes,	while	remote	
registraEon	handle	provides	an	informaEon	that	is	necessary	for	remote	memory	access.	
Related	rouEnes:		ucp_mem_unmap		
	
	
	
	
	

Memory	

memh_p	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

UCP	Memory	Management	
ucs_status_t	ucp_rkey_pack	(ucp_context_h	context,	
ucp_mem_h	memh,	void	∗∗rkey_buffer_p,	size_t	∗size_p)		
	
	
	
	
This	rouEne	allocates	memory	buffer	and	packs	into	the	buffer	a	
remote	access	key	(RKEY)	object.	RKEY	is	an	opaque	object	that	
provides	the	informaEon	that	is	necessary	for	remote	memory	
access.	This	rouEne	packs	the	RKEY	object	in	a	portable	format	
such	that	the	object	can	be	unpacked	on	any	plauorm	supported	
by	the	UC←	P	library.	In	order	to	release	the	memory	buffer	
allocated	by	this	rouEne	the	applicaEon	is	responsible	to	call	the	
ucp_rkey_buffer_release()	rouEne.		
Related	rouEnes:		ucp_rkey_buffer_release		
	
	

Memory	

memh_p	

rkey_buffer	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

UCP	Memory	Management	
ucs_status_t	ucp_ep_rkey_unpack	(ucp_ep_h	ep,	void	
∗rkey_buffer,	ucp_rkey_h	∗rkey_p)		
	
	
	
This	rouEne	unpacks	the	remote	key	(RKEY)	object	into	
the	local	memory	such	that	it	can	be	accesses	and	used	by	
UCP	rouEnes.	The	RKEY	object	has	to	be	packed	using	the	
ucp_rkey_pack()	rouEne.	ApplicaEon	code	should	not	
make	any	alternaEons	to	the	content	of	the	RKEY	buffer.		
	
Related	rouEnes:		ucp_rkey_destroy	
	
	
	
	

Memory	

memh_p	

Rkey_buffer	

ucp_rkey_h	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

CommunicaEon	DirecEves	

MPI	

Send	/	Recv	

PGAS/OpenSHMEM	

PUT	/	Get	/	Atomic	

Server/Client	

Events	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Put	
ucs_status_t	ucp_put_nbi	(ucp_ep_h	ep,	const	
void	*buffer,	size_t	length,	uint64_t	
remote_addr,	ucp_rkey_h	rkey)		
	
	
	
	
	
	

Memory	

A	

Memory	

B	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Get	
ucs_status_t	ucp_get_nbi	(ucp_ep_h	ep,	void	
*buffer,	size_t	length,	uint64_t	remote_addr,	
ucp_rkey_h	rkey)		
	
	
	
	
	
	

Memory	

A	

Memory	

B	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Send	
ucs_status_ptr_t	ucp_tag_send_nb	(ucp_ep_h	ep,	const	void	
*buffer,	size_t	count,	ucp_datatype_t	datatype,	ucp_tag_t	tag,	
ucp_send_callback_t	cb)		

	
	
	
	
	
	

S-Buffer	
Tag	

Sender		

R-Buffer	
Tag	

Receiver	

S-Buffer	
Tag	

S-Buffer	
Tag	

R-Buffer	
Tag	

R-Buffer	
Tag	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

ucs_status_ptr_t		
•  UCS_OK	-	The	send	operaEon	was	completed	immediately.	
•  UCS_PTR_IS_ERR(_ptr)	-	The	send	operaEon	failed.	
•  otherwise	-	OperaEon	was	scheduled	for	send	and	can	be	

completed	in	any	point	in	Eme.	The	request	handle	is	returned	to	
the	applicaEon	in	order	to	track	progress	of	the	message.	The	
applicaEon	is	responsible	to	released	the	handle	using	
ucp_request_release()	rouEne.		

•  Request	handling	
–  int	ucp_request_is_completed	(void	*	request)		
–  void	ucp_request_release	(void	*	request)		
–  void	ucp_request_cancel	(ucp_worker_h	worker,	void	*	request)		

	
	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Send-Sync	
ucs_status_ptr_t	ucp_tag_send_sync_nb	(ucp_ep_h	ep,	const	
void	*	buffer,	size_t	count,	ucp_datatype_t	datatype,	ucp_tag_t	
tag,	ucp_send_callback_t	cb)		

	
	
	
	
	
	

S-Buffer	
Tag	

Sender		

R-Buffer	
Tag	

Receiver	

S-Buffer	
Tag	

S-Buffer	
Tag	

R-Buffer	
Tag	

R-Buffer	
Tag	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Receive	
ucs_status_ptr_t	ucp_tag_recv_nb	(ucp_worker_h	worker,	void	
*buffer,	size_t	count,	ucp_datatype_t	datatype,	ucp_tag_t	tag,	
ucp_tag_t	tag_mask,	ucp_tag_recv_callback_t	cb)		

	
	
	
	
	
	

S-Buffer	
Tag	

Sender		

R-Buffer	
Tag	

Receiver	

S-Buffer	
Tag	

S-Buffer	
Tag	

R-Buffer	
Tag	

R-Buffer	
Tag	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Atomic	OperaEons	
•  ucs_status_t	ucp_atomic_add32	(ucp_ep_h	ep,	uint32_t	add,	uint64_t	remote_addr,	ucp_rkey_h	

rkey)		
•  ucs_status_t	ucp_atomic_add64	(ucp_ep_h	ep,	uint64_t	add,	uint64_t	remote_addr,	ucp_rkey_h	

rkey)		
•  ucs_status_t	ucp_atomic_fadd32	(ucp_ep_h	ep,	uint32_t	add,	uint64_t	remote_addr,	ucp_rkey_h	

rkey,	uint32_t	*	result)		
•  ucs_status_t	ucp_atomic_fadd64	(ucp_ep_h	ep,	uint64_t	add,	uint64_t	remote_addr,	ucp_rkey_h	

rkey,	uint64_t	*	result)		
•  ucs_status_t	ucp_atomic_swap32	(ucp_ep_h	ep,	uint32_t	swap,	uint64_t	remote_addr,	

ucp_rkey_h	rkey,	uint32_t	*result)		
•  ucs_status_t	ucp_atomic_swap64	(ucp_ep_h	ep,	uint64_t	swap,	uint64_t	remote_addr,	

ucp_rkey_h	rkey,	uint64_t	*	result)		
•  ucs_status_t	ucp_atomic_cswap32	(ucp_ep_h	ep,	uint32_t	compare,	uint32_t	swap,	uint64_t	

remote_addr,	ucp_rkey_h	rkey,	uint32_t	*	result)		
•  ucs_status_t	ucp_atomic_cswap64	(ucp_ep_h	ep,	uint64_t	compare,	uint64_t	swap,	uint64_t	

remote_addr,	ucp_rkey_h	rkey,	uint64_t	*	result)		

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

UCT	–	Transport	Layer	

UC-T (Hardware Transports) - Low Level API
 RMA, Atomic, Tag-matching, Send/Recv, Active Message

Transport for InfiniBand VERBs
driver

RC UD XRC DCT

Transport for intra-node host memory communication

SYSV POSIX KNEM CMA XPMEM

Transport for
Accelerator Memory

communucation

GPU

Transport for
Gemini/Aries

drivers

GNI

UC-S
(Services)

Common utilities

UC-P (Protocols) - High Level API
Transport selection, cross-transrport multi-rail, fragmentation, operations not supported by hardware

Message Passing API Domain:
tag matching, randevouze

PGAS API Domain:
RMAs, Atomics

Task Based API Domain:
Active Messages

I/O API Domain:
Stream

Utilities Data
stractures

Hardware

MPICH, Open-MPI, etc. OpenSHMEM, UPC, CAF, X10,
Chapel, etc. Parsec, OCR, Legions, etc. Burst buffer, ADIOS, etc.

Applications
UC

X

Memory
Management

OFA Verbs Driver Cray Driver OS Kernel Cuda

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

UCT	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

UCT	(Transport	layer)	objects	
•  uct_worker_h	-	A	context	for	separate	progress	engine	and	

communicaEon	resources.	Can	be	either	thread-dedicated	or	
shared	

•  uct_md_h	-	Memory	registraEon	domain.	Can	register	user	
buffers	and/or	allocate	registered	memory	

•  uct_iface_h	-	CommunicaEon	interface,	created	on	a	specific	
memory	domain	and	worker.	Handles	incoming	acEve	
messages	and	spawns	connecEons	to	remote	interfaces	

•  uct_ep_h	-	ConnecEon	to	a	remote	interface.	Used	to	iniEate	
communicaEons	 ©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Out-of-band	
Address	
Exchange	

EnEty	A	

Memory	
Domain	 Worker	

Interface	

Endpoint	

EnEty	B	

Memory	
Domain	 Worker	

Interface	

Endpoint	

UCT	iniEalizaEon	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Memory	Domain	RouEnes	
•  Register/de-register	memory	within	the	domain	

–  Can	potenEally	use	a	cache	to	speedup	memory	
registraEon	

•  Allocate/de-allocate	registered	memory	
•  Pack	memory	region	handle	to	a	remote-key-buffer	

–  Can	be	sent	to	another	enEty	
•  Unpack	a	remote-key-buffer	into	a	remote-key	

–  Can	be	used	for	remote	memory	access	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

UCT	CommunicaEon	RouEnes	
•  Not	everything	has	to	be	supported	

–  Interface	reports	the	set	of	supported	primiEves	
–  UCP	uses	this	info	to	construct	protocols	
–  UCP	implement	emulaEon	of	unsupported	direcEves	

•  Send	acEve	message	(acEve	message	id)	
•  Put	data	to	a	remote	memory	(virtual	address,	remote	key)	
•  Get	data	from	a	remote	memory	(virtual	address,	remote	key)	
•  Perform	an	atomic	operaEon	on	a	remote	memory:	

–  Add	
–  Fetch-and-add	
–  Swap	
–  Compare-and-swap	

•  CommunicaEon	Fence	and	Flush	(Quiet)	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

UCT	Data	Classes	
•  UCT	communicaEons	have	a	size	limit	

–  Interface	reports	max.	allowed	size	for	every	operaEon	
–  FragmentaEon,	if	required,	should	be	handled	by	user	/	UCP	

•  Several	data	“classes”	are	supported	
–  “short”	–	small	buffer	
–  “bcopy”	–	a	user	callback	which	generates	data	(in	many	cases,	“memcpy”	can	be	used	

as	the	callback)	
–  “zcopy”	–	a	buffer	and	it’s	memory	region	handle.	Usually	large	buffers	are	supported.		

•  Atomic	operaEons	use	a	32	or	64	bit	values	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

UCT	CompleEon	SemanEcs	
•  All	operaEons	are	non-blocking	
•  Return	value	indicates	the	status:	

–  OK	–	operaEon	is	completed	
–  INPROGRESS	–	operaEon	has	started,	but	not	completed	yet	
–  NO_RESOURCE	–	cannot	iniEate	the	operaEon	right	now.	The	user	might	want	to	put	this	on	a	

pending	queue,	or	retry	in	a	Eght	loop	
–  ERR_xx	–	other	errors	

•  OperaEons	which	may	return	INPROGRESS	(get/atomics/zcopy)	can	get	a	
compleEon	handle	

–  User	iniEalizes	the	compleEon	handle	with	a	counter	and	a	callback	
–  Each	compleEon	decrements	the	counter	by	1,	when	it	reaches	0	–	the	callback	is	called	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

UCT	API	Snippet	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Guidelines	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Memory	
•  It	is	a	limited	resource	

–  The	goal	is	to	maximize	the	availability	of	memory	for	the	
applicaPon	

•  Avoid	O(n)	memory	allocaEons,	where	n	is	the	number	
communicaEon	peers	(endpoints)	

•  Keep	the	endpoint	object	as	small	as	possible	
•  Keep	the	memory	pools	size	limited	
•  AllocaEon	has	to	be	proporEonal	to	the	number	of	in-
flight-operaEons	
	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Data	Path	
•  Three	main	data	paths:	

– Short	messages	–	criEcal	path	
– Medium	messages	
– All	the	rest	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Data	Path	/	Short	Messages	
•  Take	care	of	the	small-message	case	first 	 		
•  Avoid	funcEon	calls	
•  Avoid	extra	pointer	dereference,	especially	store	operaEons	
•  Avoid	adding	condiEonals,	if	absolutely	required	use	ucs_likely/ucs_unlikely	macros 		
•  Avoid	bus-locked	instrucEons	(atomics)	
•  Avoid	branches	
•  No	malloc()/free()	nor	system	calls	
•  Limit	the	scope	of	local	variables	(the	Eme	from	first	to	last		Eme	it	is	used)	-	larger	scopes	

causes	spilling	more	variables	to	the	stack	
•  Use	benchmarks	and	performance	analysis	tools	to	analyze	the	impact	on	the	latency	and	

message	rate	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Data	Path	/	Medium	Messages	
•  Avoid	locks	if	possible.	If	needed,	use	spinlock,	no	
mutex. 	 		

•  Reduce	funcEon	calls		
•  Move	error	and	slow-path	handling	code	to	non-
inline	funcEons,	so	their	local	variables	will	not	
add	overhead	to	the	prologue	and	 	epilogue	of	
the	fast-path	funcEon. 		

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Data	Path	/	“Slow”	Path	
•  Performance	is	sEll	important	
•  No	system	calls	/	malloc()	/	free()	 			
•  It's	ok	to	reasonable	add	pointer	dereferences,	condiEonals,	

funcEon	calls,	etc.		
–  Having	a	readable	code	here	is	more	important	than	saving	one	

condiEonal	or	funcEon	call. 		
•  Protocol-level	performance	consideraEons	are	more	important	

here,	such	as	fairness	between	connecEons,	fast	convergence,	etc.	
•  Avoid	O(n)	complexity.	As	a	thumb	rule,	all	scheduling	mechanisms	

have	to	be	O(1). 		

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Summary	
•  UCX	has	been	integrated	with:	

– MPI:	Open	MPI,	MPICH,		
– OpenSHMEM:	Reference	ImplementaEon,	OSHMEM	

•  Support	mulEple	transports	
–  IB/RoCE:	RC,	UD,	DCT,	CM	
– Aries/Gemini:	FMA,	SMSG,	BTE	
–  Shared	Memory:	SysV,	Posix,	CMA,	KNEM,	XPMEM	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

UCX	
Unified	CommunicaEon	-	X	

Framework	
	

WEB:		
www.openucx.org	

hlps://github.com/openucx/ucx	
			Mailing	List:		

hlps://elist.ornl.gov/mailman/lisEnfo/ucx-group	
ucx-group@elist.ornl.gov	

	
©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

OPEN	MPI	INTEGRATION	WITH	UCX	

	
	
Alina	Sklarevich,	Mellanox	Technologies	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Overview	
•  OMPI	supports	UCX	starEng	OMPI	v1.10.	

	
•  UCX	is	a	PML	component	in	OMPI.	

To	enable	UCX:	
– mpirun	-mca	pml	ucx	…	<APP>	
	

•  OMPI	is	integrated	with	the	UCP	layer.	
	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

•  UCX	mca	parameters:	
– pml_ucx_verbose,	pml_ucx_priority	
	

•  UCX	environment	parameters:	
– ucx_info	-f	
	

•  For	example:	
								mpirun	-mca	pml	ucx	-x	UCX_NET_DEVICES=mlx5_0:1	…	<APP>	

	

Overview	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

•  The	calls	to	the	UCP	layer	will	invoke	UCT	calls.	
	

•  UCX	will	select	the	best	transport	to	use.	
	

•  OMPI	uses	Full/Direct	modex	with	UCX.	
	

•  UCX	will	connect	the	ranks.	

Overview	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

●  Tag-matching	
	

●  Remote	memory	operaEons,	one	sided	operaEons	
	

●  Atomic	operaEons	
	

●  Supported	transports:	
○  IB	-	ud,	rc,	dc,	accelerated	verbs		
○  shared	memory	
○  uGNI	

	

UCX	Features	-	Recap	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

•  ucp_context_h	
A	global	context	for	the	applicaEon	-	a	single	UCP	communicaEon	instance.		
Includes	communicaEon	resources,	memory	and	other	communicaEon	informaEon	
directly	associated	with	a	specific	UCP	instance.	

	
•  ucp_worker_h	
Represents	an	instance	of	a	local	communicaEon	resource	and	an	independent	
progress	of	communicaEon.	It	contains	the	uct_iface_h’s	of	all	selected	transports.	
One	possible	usage	is	to	create	one	worker	per	thread.	

		
•  ucp_ep_h	
Represents	a	connecEon	to	a	remote	worker.		
It	contains	the	uct_ep_h’s	of	the	acEve	transports.	
	
	

UCX	Main	Objects	-	Recap	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

•  ucp_mem_h	
A	handle	to	an	allocated	or	registered	memory	in	the	local	process.	Contains	details	
describing	the	memory,	such	as	address,	length	etc.		

	
•  ucp_rkey_h	
Remote	key	handle,	communicated	to	remote	peers	to	enable	an	access	to	the		
memory	region.	Contains	an	array	of	uct_rkey_t’s.	

	
•  ucp_config_t		
ConfiguraEon	for	ucp_context_h.	Loaded	from	the	run-Eme	to	set	environment		
parameters	for	UCX.	
	

UCX	Main	Objects	-	Recap	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

UCX	API	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

APPLICATION	

OMPI	

UCX	LIBRARY	

DRIVER	

PML	UCX	

HARDWARE	

OMPI	-	UCX	Stack	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

MPI_Init										

ucp_config_read	

mca_pml_ucx_open		
	

ucp_config_release			
ucp_init		

OpenMPI	

UCX	

ompi_mpi_init	

Init	Stage	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

ucp_worker_create	

ucp_worker_release_address			

ucp_worker_get_address		

mca_pml_ucx_init		

Init	Stage	-	Cont	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

opal_progress_register(mca_pml_ucx_progress)		
	

ucp_worker_progress		

Init	Stage	-	Cont	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

MPI_Isend	 mca_pml_ucx_isend		

mca_pml_ucx_add_proc	

ucp_ep_create	
uct_ep_am_short					

ucp_tag_send_nb			 uct_ep_am_bcopy		
	uct_ep_am_zcopy	
	

Send	Flow	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

•  If	the	send	request	isn’t	completed			
		→		progress	it.		

•  ConEguous	and	non-conEguous	datatypes	are	
supported.	

•  Once	completed		
→	callback	funcEon	is	invoked	

Send	Flow	-	Cont	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

MPI_Irecv	 mca_pml_ucx_irecv		

ucp_tag_recv_nb			
Eager	Receive	

Rendezvous	

Receive	Flow	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

•  Once	completed		
				→	callback	funcEon	is	invoked	

•  Expected	&	Unexpected	queues	are	used	

•  If	the	receive	request	isn’t	completed			
→		progress	it.		

•  Can	probe	with	ucp_tag_probe_nb		
→	ucp_tag_msg_recv_nb	

Receive	Flow	-	Cont	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

opal_progress		

mca_pml_ucx_progress		

ucp_worker_progress	 uct_worker_progress	

*	Send/Receive	Finished:	
mca_pml_ucx_send/recv_compleEon		

Progress	Flow	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

MPI_Finalize	

ucp_ep_destroy	

ompi_mpi_finalize	

mca_pml_ucx_del_procs		
	
		

*	Per	remote	peer:	

FinalizaEon	Stage	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

mca_pml_ucx_close		

ucp_cleanup	

opal_progress_unregister	(mca_pml_ucx_progress)		
	
ucp_worker	_destroy	

mca_pml_ucx_cleanup	

FinalizaEon	Stage	-	Cont	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

PERFORMANCE		

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Command	Line:	
	
$mpirun	-np	2	--bind-to	core	--map-by	node	-mca	pml	ucx			
-x	UCX_TLS=rc_mlx5,cm	osu_bw	

Setup	Details:	
	
MLNX_OFED_LINUX-3.3-1.0.0.0	
ConnectX-4		
EDR	-	100Gb/sec	
Intel(R)	Xeon(R)	CPU	E5-2697	v3	@	2.60GHz	
2	hosts	connected	via	switch	

PERFORMANCE	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

osu_bw		

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

osu_bibw		

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

osu_latency		

OPENSHMEM	INTEGRATION	WITH	UCX	

	
	
Swen	Boehm,	Oak	Ridge	NaEonal	Laboratory	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

OpenSHMEM	-	Overview		
•  PGAS	Library	
•  One-sided	CommunicaEon	
•  Atomic	operaEons	
•  CollecEves		

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Symmetric	Memory	
•  All	Processing	Elements	(PE's)	share	an	address	space	
(symmetric	heap)	

•  Symmetric	heap	is	allocated	on	startup	
•  Heapsize	can	be	customized	via	environment	variable	
SMA_SYMMETRIC_SIZE	

•  Symmetric	data	objects	must	be	allocated	with	
shmem_malloc	

•  Symmetric	data	objects	are	accessible	by	remote	PEs	
©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Shared	global	address	space	
•  Global	and	staEc	variables	are	symmetric	
objects	

•  Accessibe	by	remote	PEs	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

OpenSHMEM API

Atomics RMA Collectives Symetric Memory

Core Components
Utils

Comms

UCX GASNet

OpenSHMEM	Reference	
ImplementaEon	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

IniEalizaEon	
shmem_init	

shmemi_comms_init	
...	
ucp_config_read	
ucp_init	
ucp_config_release	
ucp_worker_create	
init_memory_regions	(more	on	this	later)	
...	
ucp_ep_create	(for	each	PE)	
ucp_config_release	
...	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Seg	A	 Seg	B	 …	

Memory	registraEon	
•  OpenSHMEM	registers	global	data	(data	and	bss	
segment)	and	the	symmetric	heap	

•  ucp_mem_map	maps	the	memory	with	the	ucp	
context	(returning	ucp_mem_h)	

RMA	
•  For	RMA	operaEons	UCP	needs	Remote	Memory	
Handle	(remote	key	or	rkey)	

•  rkeys	require	registered	memory	(ucp_mem_h)		
•  ucp_rkey_pack	is	used	to	generate	packed	
representaEon	

•  The	packed	rkey	is	exchanged	with	remote	PE(s)	
•  ucp_ep_rkey_unpack	will	return	rkey_t	
handle	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

PE	0	
Seg	A	

…	

Seg	B	

PE	1	

Seg	A	

…	

Seg	B	put	

TranslaEng	symmetric	addresses	
•  To	access	a	remote	address	
the	rkey	is	needed	

•  Look	up	rkey	with	find_seg	
•  translate	local	buffer	
address	into	remote	buffer	
address	

RMA	put	
shmem_<TYPENAME>_put	

ucx_put	
find_seg	
translate_symmetric_address	

ucp_put

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

uct_ep_put_short					
uct_ep_put_bcopy		
	uct_ep_put_zcopy*	
	

RMA	get	
shmem_<TYPENAME>_get	

ucx_get	
find_seg	
translate_symmetric_address	

ucp_get

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

uct_ep_get_bcopy		
	uct_ep_get_zcopy*	
	

RMA	atomics	
shmem_<TYPENAME>_<OP>	

ucx_get	
find_seg	
translate_symmetric_address	
ucp_atomic_<op,size>

 uct_ep_atomic_<op,size>

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

PERFORMANCE	
Setup:	

Turing	Cluster	@	ORNL		
Red	Hat	Enterprise	Linux	Server	release	7.2	
(3.10.0-327.13.1.el7.x86_64)	
Mellanox	ConnectX-4	VPI	
EDR	IB	(100Gb/s)	
Intel	Xeon	E5-2660	v3	@	2.6GHz	

Command	Line:	
$ orterun -np 2 osu_oshmem_put_mr

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

OSU	Message	Rate	

1 2 4 8 16 32 64 128 256 512
1024

2048
4096

8192
16384

32768
65536

0

1 · 106

2 · 106

3 · 106

4 · 106

5 · 106

6 · 106

Message size in Bytes

M
es

sa
ge

s
pe

r
se

co
nd

OSU Message Rate

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

OSU	Put	Latency	

1 2 4 8 16 32 64 128 256 512
1024

2048
4096

8192
16384

32768
65536

0

2

4

6

8

10

Message size in Bytes

La
te

nc
y

in
µ

s
OSU Put Latency

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

OSU	Get	Latency	

1 2 4 8 16 32 64 128 256 512
1024

2048
4096

8192
16384

32768
65536

0

2

4

6

8

10

Message size in Bytes

La
te

nc
y

in
µ

s
OSU Get Latency

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Compiling	UCX	
$  ./autogen.sh	
$  ./contrib/configure-release	--prefix=$PWD/
install	

$ make	-j8	install	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

EXAMPLES	
Swen	Boehm,	Oak	Ridge	NaEonal	Laboratory	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Compile	OpenMPI	with	UCX	
$  ./autgen.pl	
$  ./configure	--prefix=$PWD/install	\	
--with-ucx=$PWD/ucx	

$ make	&&	make	install	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Build	OpenSHMEM	on	UCX	
$  ./autogen.pl	
$  ./configure	--with-comms-layer=ucx	\	
--with-ucx-root=$PWD/install	\	
--with-rte-root=$PWD/install	\	
--prefix=$PWD/install	

$ make	&&	make	install	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

UCX	–	Hello	World	Example	
	
	

ucp_hello_world.c	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

EXAMPLES	
Alina	Sklarevich,	Mellanox	Technologies	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

OSU_BW	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

OSU_BIBW	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

OSU_LATENCY	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

UCX_PERFTEST	

UCX	
Unified	CommunicaEon	-	X	

Framework	
	

WEB:		
www.openucx.org	

hlps://github.com/openucx/ucx	
			Mailing	List:		

hlps://elist.ornl.gov/mailman/lisEnfo/ucx-group	
ucx-group@elist.ornl.gov	

	
©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

©	2016	Unified	CommunicaEon	X.	All	rights	reserved.	

Acknowledgements	

This	 work	 was	 supported	 by	 the	 United	 States	
Department	of	Defense	&	used	resources	at	Oak	
Ridge	NaEonal	Laboratory.	
	

