——————————
INTERCONNECTS @

Designing and Developing Performance
Portable Network Codes

Pavel Shamis (Pasha), ARM Research
Alina Sklarevich, Mellanox Technologies
Swen Boehm, Oak Ridge National Laboratory

OAK

ARM Mellanox RIDGE
National Laborato ry

Connect. Accelerate. Outperform”
© 2016 Unified Communication X. All rights reserved.

Outline

* Modern Interconnect Technologies
— Overview of existing technologies
— Software interfaces
— Unified Communication X Framework
 UCX programming by example
— OpenMPI
— OpenSHMEM

e UCX Examples

Pavel Shamis (Pasha), ARM Research

MODERN INTERCONNECT
TECHNOLOGIES

© 2016 Unified Communication X. All rights reserved.

Interconnects @

* |nterconnects are everywhere: System-on-

Chip, chip-to-chip, rack, top-of-the-rack, wide
area networks

1
- |
e |
il

© 2016 Unified Communication X. All rights reserved.

Ethernet @

Used Everywhere

Typically used in combination with TCP/UD/IP
Socket API

10/25/50/100 Gb/s
Not covered in this tutorial
What is covered ? — HPC Interconnects

© 2016 Unified Communication X. All rights reserved.

Modern HPC Systems

Processor Generation System Share

Not that “special” anymore

Commodity CPUs
Commodity Accelerators
Commodity Memories

Still “somewhat” special

Form factor
System density
Cooling technologies (warm water, liquid cooling ,etc.)

The “secret sauce” — Interconnect

Fujitsu Tofu, IBM Torus, SGI Numalink, Cray Aries/Gemini, TH Express-2, InfiniBand

Software stack — MPI + OpenMP/OpenACC

@ Intel Xeon E5 (
lvyBridge)

@ Intel Xeon E5 (Haswe...
Intel Xeon E5 (Sandy...

@ Power BQC

@ Xeon 5600-series (W...

@ Opteron 6200 Series...

[) Opteron 6100-series...

@ POWERY

[) Opteron 6300 Series...

@ SPARC64 Xlfx

@ Others

http://www.top500.0rg

© 2016 Unified Communication X. All rights reserved.

The “secret sauce”

Low Latency (< 1 usec)
High Bandwidth (> 100 Gb/s)
High injection rates (> 150M messages/sec)
Network topologies and adaptive routing
Scalability — efficient support for communication with millions of cores
OS bypass (direct access to the hardware from the user level)
Remote Direct Memory Access (avoid memory copies in communication stack)
— Read, Write, Atomics
Offloads
— Collective operations, support for non-contiguous data, GPU-Direct, Peer-Direct, tag-matching, etc.
Highly optimized network software stack (MPIl + OpenMP/ACC, PGAS, etc.)
— Low software overheads 0.6-1.2 micro-sec (MPI latency)
— Low memory footprint (avoid O(n) memory allocations)
— Performance portable APIs

© 2016 Unified Communication X. All rights reserved.

OS Bypass

No OS-bypass

Application
Initialization/Query
Send
Receive

Kernel

PCle Doorbells t
Hardware

With OS-bypass

Application

Initialization
Query

Communication
directives

Kernel

|

Hardware

PCle Doorbells

© 2016 Unified Communication X. All rights reserved.

RDMA

Application Application
Data Buffer Data Buffer
copy copy
Socket
copy copy
DMA DMA
TCP/IP TCP/IP
copy copy
Driver
copy copy

NIC NIC

© 2016 Unified Communication X. All rights reserved.

Advanced Semantics

RDMA Read and Write

Send / Receive
— Send / Receive with TAG matching

Atomic Operations on Remote Memory
— SWAP

— CSWAP

— ADD

— XOR

Group Communication directives
— Reduce, Allreduce, Scatter, Gather, AlltoAll

Socket API:

send() and recv(), or write() and
read(), or sendto() and
recvfrom()

© 2016 Unified Communication X. All rights reserved.

Interconnects Overview

InfiniBand RoCE iWarp RapidlO NVIDIA Intel Bull BXI Extoll
NVLINK OmniPath

Production 100Gb/s 100Gb/s | 40Gb/s | 40Gb/s 640Gb/s — 100Gb/s 100Gb/s 100Gb/s
BW (Mb/s) 1600Gb/s

Hardware No No No Yes Yes No No No
Terminated

RDMA Yes Yes Yes Yes ? Yes Yes Yes

© 2016 Unified Communication X. All rights reserved.

Typical HPC Software Stack @

Ap p | icati ons < Parallel Applications)
— CAMD, NAMD, Fluent, Lsdyna, etc.
Programming models
— MPI, UPC, OpenSHMEM/SHMEM, CO'array <Parallel Programming Models>
Fortran, X10, Chapel
Middleware —
— GasNET, MXM, ARMCI, etc. < Communcaton >
— Part of programming model implementation

— Sometimes “merged” with driver —
D rive r Network Driver
— OFA Verbs, Cray uGNI, etc.

Hardware Transport = Network
etwor
— InfiniBand, Cray Aries, Intel OmniPath, BXI, Hardware

etc. —~

© 2016 Unified Communication X. All rights reserved.

Why we care about software stack ? @

* Network latency is a key
— Sub Micro is typical for HPC
Network

e Software stack overheads

Critical Path =

55555

© 2016 Unified Communica

00000

tion X. All rights reserved.

lllllllll

RMA PUT

llllllll

MMMMMM

uccs

Network Programming

Interfaces (beyond sockets)
Open Fabric Alliance: Verbs, Udapl, SDP, libfabrics, ...
Research: Portals, CCl, UCCS
Vendors: Mellanox MXM, Cray uGNI/DMAPP, Intel
PSM, Atos Portals, IBM PAMI, OpenMX
Programming model driven: MVAPICH-X, GasNET,
ARMCI

Enterprise App oriented: OpenDataPlane, DPDK,
Accelio

© 2016 Unified Communication X. All rights reserved.

Vendors Specific APIs @

Pros Cons

* Production Quality e Often “vendor” locked
 Optimized for Performance ¢ Optimized for particular

* Support and maintenance technology
e Co-design lags behind

© 2016 Unified Communication X. All rights reserved.

Open Source APIs @

Pros Cons

« Community (a.k.a. user) e Typically not as optimized
driven as commercial/vendor

e Easy to modify and extend software

e Good for research * Maintenance is challenge

© 2016 Unified Communication X. All rights reserved.

Research API

Pros Cons
* |Innovative and forward e Support, support, support
looking e Typically narrow focus

— A lot of good ideas for “free”

© 2016 Unified Communication X. All rights reserved.

Network Programming
Interfaces

Open Source Ven%?jrl Specific
Middleware Middleware

General Purp
Middleware

© 2016 Unified Communication X. All rights reserved.

Unified Communication - X
Framework

UCX

© 2016 Unified Communication X. All rights reserved.

History

MXM PAMI
e Developed by Mellanox Technologies e Developed by IBM on BG/Q, PERCS, IB
e HPC communication library for InfiniBand VERBS
devices and shared memory e Network devices and shared memory

e Primary focus: MPI, PGAS e MPI, OpenSHMEM, PGAS, CHARM++, X10
e (C++ components
e Aggressive multi-threading with contexts

UCCS e Active Messages

e Developed by ORNL, UH, UTK e Non-blocking collectives with hw accleration

e Originally based on Open MPI BTL and OPAL
layers

e HPC communication library for InfiniBand,
Cray Gemini/Aries, and shared memory

® Primary focus: OpenSHMEM, PGAS

® Also supports: MPI

support

Decades of community and industry
experience in development of HPC
software

© 2016 Unified Communication X. All rights reserved.

What we don’t want to do...

HOW STANDARDS PROUFERATE:
(se5: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, £TC)
M7 RIDICULOUS! [Scon:]
WE NEED To DEVELORP

smATon: || REUNERA SmeD | | 6N

THERE. ARE USE. CASES. THERE ARE
|4 COMPET] YEAH!
iING . f IS5 COMPETING
STANDPRDS. O STANDPRDS.

Borrowed from: https://xkcd.com/927

© 2016 Unified Communication X. All rights reserved.

UCX Framework Mission

Collaboration between industry, laboratories, and academia
Create open-source production grade communication framework for HPC applications

Enable the highest performance through co-design of software-hardware interfaces

Unify industry - national laboratories - academia efforts

API Performance oriented Production quality

Exposes broad semantics that target
data centric and HPC programming
models and applications

Optimization for low-software Developed, maintained, tested, and
overheads in communication path used by industry and researcher
allows near native-level performance community

Community driven Research Cross platform

Collaboration between industry, The framework concepts and ideas are Support for Infiniband, Cray, various
laboratories, and academia driven by research in academia, shared memory (x86-64, Power, ARM),
laboratories, and industry GPUs

Co-design of Exascale Network APls

© 2016 Unified Communication X. All rights reserved.

TECHNOLOGIES

Connect. Accelerate. Outperform”

OAK
RIDGE

Natinnal T aharatare

Pal
*Los Alamos

ARM

<A NVIDIA.

A Collaboration Efforts

Mellanox co-designs network APl and contributes MXM technology

— Infrastructure, transport, shared memory, protocols, integration with
OpenMPI/SHMEM, MPICH

ORNL co-designs network APl and contributes UCCS project
— InfiniBand optimizations, Cray devices, shared memory
LANL co-designs network API

ARM co-designs the network APl and contributes optimizations for
ARM eco-system

NVIDIA co-designs high-quality support for GPU devices
— GPUDirect, GDR copy, etc.

IBM co-designs network APl and contributes ideas and concepts from
PAMI

UH/UTK focus on integration with their research platforms

© 2016 Unified Communication X. All rights reserved.

What’s new about UCX?

Simple, consistent, unified API

Choosing between low-level and high-level API allows easy integration
with a wide range of applications and middleware.

Protocols and transports are selected by capabilities and performance
estimations, rather than hard-coded definitions.

Support thread contexts and dedicated resources, as well as fine-grained
and coarse-grained locking.

Accelerators are represented as a transport, driven by a generic “glue”
layer, which will work with all communication networks.

© 2016 Unified Communication X. All rights reserved.

UC-P for Protocols

High-level APl uses UCT
framework to construct
protocols commonly found
in applications

Functionality:
Multi-rail, device selection,

pending queue, rendezvous,

tag-matching, software-
atomics, etc.

UCX Framework

UC-T for Transport

Low-level APl that expose
basic network operations
supported by underlying
hardware. Reliable, out-of-
order delivery.

Functionality:

Setup and instantiation of
communication operations.

© 2016 Unified Communication X. All rights reserved.

UC-S for Services

This framework provides
basic infrastructure for
component based
programming, memory
management, and useful
system utilities

Functionality:
Platform abstractions, data
structures, debug facilities.

A High-level Overview

Applications

OpenSHMEM, UPC, CAF, X10,
Chapel, etc.
AN

Parsec, OCR, Legions, etc.
2

MPICH, Open-MPI, etc.
AN
-

tag matching, randevouze

Transport for InfiniBand VERBs
driver

Message Passing APl Domain:

UC-P (Protocols) - High Level API

Transport selection, cross-transrport multi-rail, fragmentation, operations not supported by hardware

Task Based APl Domain: 1/0 API Domain:
Active Messages Stream

PGAS API Domain:
RMAs, Atomics

UC-T (Hardware Transports) - Low Level API

RMA, Atomic, Tag-matching, Send/Recv, Active Message
Transport for Transport for intra-node host memory communication
Gemini/Aries
drivers

Burst buffer, ADIOS, etc.
2
~

UC-S
(Services)

Transport for
Accelerator Memory
communucati

OFA Verbs Driver

V

Cray Driver OS Kernel

Hardware

© 2016 Unified Communication X. All rights reserved.

Clarifications @

e UCX is not a device driver

 UCX is a communication framework
— Close-to-hardware API layer
— Providing an access to hardware’s capabilities

e UCX relies on drivers supplied by vendors

© 2016 Unified Communication X. All rights reserved.

Project Management @

API| definitions and changes are discussed within
developers (mail-list, github, conf call)

PRs with APl change have to be approved by ALL
maintainers

PR within maintainer “domain” has to be
reviewed by the maintainer or team member
(Example: Mellanox reviews all IB changes)

© 2016 Unified Communication X. All rights reserved.

Licensing @

e BSD 3 Clause license

* Contributor License Agreement — BSD 3
based

© 2016 Unified Communication X. All rights reserved.

UCX Advisory Board

Arthur Barney Maccabe (ORNL)

Bronis R. de Supinski (LLNL)

Donald Becker (NVIDIA)

George Bosilca (UTK)

Gilad Shainer (Mellanox Technologies)
Pavan Balaji (ANL)

Pavel Shamis (ARM)

Richard Graham (Mellanox Technologies)
Sameer Kumar (IBM)

Sameh Sharkawi (IBM)

Stephen Poole (Open Source Software Solutions)

© 2016 Unified Communication X. All rights reserved.

APl Overview

© 2016 Unified Communication X. All rights reserved.

UCP - Protocol Layer

Applications

\ \A UC-P (Protocols) - High Level API / /

Transport selection, cross-transrport multi-rail, fragmentation, operations not supported by hardware
Message Passing APl Domain: PGAS API Domain: Task Based APl Domain: 1/0 APl Domain:
tag matching, randevouze RMAs, Atomics Active Messages Stream

UC-T (Hardware Transports) - Low Level API UC-S

RMA, Atomic, Tag-matching, Send/Recv, Active Message (Services)

Common utilities

Memory
Management

Transport for InfiniBand VERBs Transport for Transport for intra-node host memory communication Transport for
driver Gemini/Aries Accelerator Memory
drivers communucation

OFA Verbs Driver Cray Driver OS Kernel

%

© 2016 Unified Communication X. All rights reserved.

UCP Protocol @

3 & EVERYTHING SHOULD BE MADE
= 9 A5 SIMPLE AS POSSIBLE

BUT NOT

© 2016 Unified Communication X. All rights reserved.

Protocol Layer

Selects the best network for the application
— Does not have to be the same vendor
Optimized by default
— Protocols are optimized for the message size and underlying network semantics
— Intelligent fragmentation
Multi-rail, multi-interconnect communication
Emulates unsupported semantics in software
— No “ifdefs” in user code
— Software atomics, tag-matching, etc.
Abstracts connection setup
Handles 99% of “corner” cases
— Network out of resources
— Reliability
— No message size limit
— ...and many more

© 2016 Unified Communication X. All rights reserved.

UCP Objects

* ucp_context_h

— A global context for the application. For example, hybrid MPI/
SHMEM library may create on context for MPI, and another for
SHMEM.

 ucp_worker_h

— Communication and progress engine context. One possible
usage is to create one worker per thread.

e ucp_ep_h

— Communication peer. Used to initiate communications
directives

© 2016 Unified Communication X. All rights reserved.

ucp_context_h

UCP Initialization

ucp_init (const ucp_params_t * params, const ucp_config_t *
config, ucp_context_h * context _p)

in config | UCP configuration descriptor allocated through ucp_config_read() routine.
in params | User defined tunings for the UCP application context.
out context p | Initialized UCP application context.

This routine creates and initializes a UCP application context.

This routine checks APl version compatibility, then discovers the
available network interfaces, and initializes the network
resources required for discovering of the network and memory
related devices. This routine is responsible for initialization all
information required for a particular application scope, for
example, MPI application, OpenSHMEM application, etc.

Related routines: ucp_cleanup, ucp_get_version

© 2016 Unified Communication X. All rights reserved.

[ucp_context_h

l

H[ucp_worker_h

UCP Initialization

ucs_status_t ucp_worker_create (ucp_context_h context,
ucs_thread_mode_t thread _mode, ucp_worker_h *worker p)

in context | Handle to UCP application context.
in thread_mode | Thread safety mode for the worker object and resources associated with it.
out worker_p | A pointer to the worker object allocated by the UCP library

This routine allocates and initializes a worker object. Each worker is
associated with one and only one application context. In the same time, an
application context can create multiple workers in order to enable concurrent
access to communication resources. For example, application can allocate a
dedicated worker for each application thread, where every worker can be
progressed independently of others.

Related routines: ucp_worker_destroy, ucp_worker_get_address,
ucp_worker_release_address, ucp_worker_progress, ucp_worker_fence,
ucp_worker_flush

© 2016 Unified Communication X. All rights reserved.

[ucp_context_h}

Address

~

N

H[ucp_worker_

]

UCP Initialization

ucs_status_t ucp_worker_get_address (ucp_worker_h
worker, ucp_address_t ** address p, size_t *
address_length _p)

in worker | Worker object whose address to return.
out address_p | A pointer to the worker address.
out address_« | The size in bytes of the address.
length_p

This routine returns the address of the worker object. This
address can be passed to remote instances of the UCP
library in order to to connect to this worker. The memory
for the address handle is allocated by this function, and
must be released by using ucp_worker_release_address()
routine.

© 2016 Unified Communication X. All rights reserved.

UCP Initialization

[ucs_status_t ucp_ep_create (ucp_worker_h worker, const

ucp_address_t * address, ucp_ep_h*ep p)

in worker | Handle to the worker; the endpoint is associated with the worker.
l in address | Destination address; the address must be obtained using ucp_worker_get <«

ucp_context_h

address() routine.
out ep_p | A handle to the created endpoint.

Address

destination address that identifies the remote worker. This function

= This routine creates and connects an endpoint on a local worker for a
ucp_worker_h . : o o : .
P— - is non-blocking, and communications may begin immediately after it

returns. If the connection process is not completed, communications
may be delayed. The created endpoint is associated with one and

only one worker.

ucp_ep_h

ucp_ep_h Related routines: ucp_ep_flush, , ucp_ep_destroy

ucp_ep_h

© 2016 Unified Communication X. All rights reserved.

Entity A

Context

Worker

Endpoint

Endpoint

Endpoint

UCP API

Entity B

Out-of-band
Address Context
Exchange

Worker

Entity C

Entity D

© 2016 Unified Communication X. All rights reserved.

UCP Memory Management @

ucs_status_t ucp_mem_map (ucp_context_h context, void **address_p, size_t length,
unsigned flags, ucp_mem_h *memh_p)

Memory - _
in context | Application context to map (register) and allocate the memory on.
in, out address p | If the pointer to the address is not NULL, the routine maps (registers) the mem-
l ory segment. if the pointer is NULL, the library allocates mapped (registered)
memory segment and returns its address in this argument.
mem h P in length | Length (in bytes) to allocate or map (register).
= in flags | Allocation flags (currently reserved - set to 0).
out memh_p | UCP handle for the allocated segment.

This routine maps or/and allocates a user-specified memory segment with UCP
application context and the network resources associated with it. If the application
specifies NULL as an address for the memory segment, the routine allocates a mapped
memory segment and returns its address in the address_p argument. The network stack
associated with an application context can typically send and receive data from the
mapped memory without CPU intervention; some devices and associated network stacks
require the memory to be mapped to send and receive data. The memory handle includes
all information required to access the memory locally using UCP routines, while remote
registration handle provides an information that is necessary for remote memory access.
Related routines: ucp_mem_unmap

© 2016 Unified Communication X. All rights reserved.

UCP Memory Management

ucs_status_t ucp_rkey_pack (ucp_context_h context,
ucp_mem_h membh, void **rkey_buffer_p, size_t *size p)

[Memory]

memh_p

v
[rkey buffer]

in

context

Application context which was used to allocate/map the memory.

in

memh

Handle to memory region.

out

rkey buffer_p

Memory buffer allocated by the library. The buffer contains packed RKEY.

out

size_p

Size (in bytes) of the packed RKEY.

This routine allocates memory buffer and packs into the buffer a
remote access key (RKEY) object. RKEY is an opaque object that
provides the information that is necessary for remote memory
access. This routine packs the RKEY object in a portable format
such that the object can be unpacked on any platform supported
by the UC& P library. In order to release the memory buffer
allocated by this routine the application is responsible to call the
ucp_rkey buffer_release() routine.

Related routines: ucp_rkey_ buffer_release

© 2016 Unified Communication X. All r|ghts reserved.

UCP Memory Management

*rkey_buffer, ucp_rkey_h *rkey p)

ucs_status_t ucp_ep_rkey unpack (ucp_ep_h ep, void
[Memory J

in ep | Endpoint to access using the remote key.
in rkey_buffer | Packed rkey.
v out rkey_p | Remote key handle.
memh_p
This routine unpacks the remote key (RKEY) object into

L the local memory such that it can be accesses and used by

[Rkey_buffer] UCP routines. The RKEY object has to be packed using the
: ucp_rkey pack() routine. Application code should not

make any alternations to the content of the RKEY buffer.

ucp_rkey_h Related routines: ucp_rkey_destroy

© 2016 Unified Communication X. All rights reserved.

Communication Directives

MPI PGAS/OpenSHMEM Server/Client

Send / Recv PUT / Get / Atomic Events

© 2016 Unified Communication X. All rights reserved.

Put @

ucs_status_t ucp_put_nbi (ucp _ep_h ep, const
void *buffer, size_t length, uint64 t
remote_addr, ucp_rkey h rkey)

in ep | Remote endpoint handle.
in buffer | Pointer to the local source address.
in length | Length of the data (in bytes) stored under the source address.
in . remote_addr | Pointer to the destination remote address to write to.
in rkey | Remote memory key associated with the remote address.
A B

[Memory { Memory]
Unified Communication X. All righ d-

Get @

ucs_status _t ucp_get_nbi (ucp _ep h ep, void
*buffer, size_t length, uint64_t remote addr,
ucp rkey h rkey)

ep | Remote endpoint handle.
in buffer | Pointer to the local source address.
in length | Length of the data (in bytes) stored under the source address.
in [remote_addr | Pointer to the destination remote address to write to.
in rkey | Remote memory key associated with the remote address.

Send

ucs_status_ptr tucp_tag _send_nb (ucp _ep h ep, const void
*buffer, size_t count, ucp_datatype_t datatype, ucp_tag_t tag,
ucp_send_callback tcb)

in ep | Destination endpoint handle.

in buffer | Pointer to the message buffer (payload).

in count | Number of elements to send

in datatype | Datatype descriptor for the elements in the buffer.

in tag | Message tag.

in cb | Callback function that is invoked whenever the send operation is completed.
It is important to note that the call-back is only invoked in a case when the
operation cannot be completed in place.

Sender Receiver

S-Buffer | S-Buffer SBufferw R-Buffer | R-Buffer | R-Buffer
Tag Tag Tag Tag Tag Tag

16 Unified Communication X. All righ

ucs_status ptr t

UCS _OK - The send operation was completed immediately.
UCS_PTR_IS _ERR(_ptr) - The send operation failed.

otherwise - Operation was scheduled for send and can be
completed in any point in time. The request handle is returned to

the application in order to track progress of the message. The
application is responsible to released the handle using
ucp_request_release() routine.
Request handling

— int ucp_request_is_completed (void * request)

— void ucp_request_release (void * request)

— void ucp_request_cancel (ucp_worker_h worker, void * request)

© 2016 Unified Communication X. All rights reserved.

Send-Sync

ucs_status_ptr t ucp_tag _send_sync_nb (ucp _ep h ep, const
void * buffer, size_t count, ucp_datatype_t datatype, ucp_tag t
tag, ucp_send_ callback tcb)

in ep | Destination endpoint handle.

in buffer | Pointer to the message buffer (payload).

in count | Number of elements to send

in datatype | Datatype descriptor for the elements in the buffer.

in tag | Message tag.

in cb | Callback function that is invoked whenever the send operation is completed.
Sender Receiver

S-Buffer | S-Buffer SBufferw R-Buffer | R-Buffer | R-Buffer
Tag Tag Tag Tag Tag Tag

16 Unified Communication X. All righ

Recelve

ucs_status_ptr t ucp_tag recv_nb (ucp_worker_h worker, void
*buffer, size_t count, ucp _datatype t datatype, ucp_tag t tag,
ucp_tag ttag mask, ucp tag recv_callback tcb)

in worker | UCP worker that is used for the receive operation.

in buffer | Pointer to the buffer to receive the data to.

in count | Number of elements to receive

in datatype | Datatype descriptor for the elements in the buffer.

in tag | Message tag to expect.

in tag mask | Bit mask that indicates the bits that are used for the matching of the incoming
tag against the expected tag.

in cb | Callback function that is invoked whenever the receive operation is completed
and the data is ready in the receive buffer.

Sender Receiver

S-Buffer | S-Buffer SBuffer} R-Buffer | R-Buffer | R-Buffer
Tag Tag Tag Tag Tag Tag

16 Unified Communication X. All righ

Atomic Operations

ucs_status_t ucp_atomic_add32 (ucp_ep_h ep, uint32_t add, uint64_t remote_addr, ucp_rkey_h
rkey)

ucs_status_t ucp_atomic_add64 (ucp_ep_h ep, uint64_t add, uint64_t remote_addr, ucp_rkey h
rkey)

ucs_status_t ucp_atomic_fadd32 (ucp_ep_h ep, uint32_t add, uint64_t remote _addr, ucp_rkey h
rkey, uint32_t * result)

ucs_status_t ucp_atomic_fadd64 (ucp_ep_h ep, uint64 _t add, uint64 _t remote _addr, ucp_rkey h
rkey, uinté4_t * result)

ucs_status_t ucp_atomic_swap32 (ucp_ep_h ep, uint32_t swap, uint64_t remote_addr,
ucp_rkey h rkey, uint32_t *result)

ucs_status_t ucp_atomic_swap64 (ucp_ep_h ep, uint6d_t swap, uint64_t remote _addr,
ucp_rkey_h rkey, uint64 t * result)

ucs_status_t ucp_atomic_cswap32 (ucp_ep_h ep, uint32_t compare, uint32_t swap, uint64 _t
remote_addr, ucp_rkey_h rkey, uint32_t * result)

ucs_status_t ucp_atomic_cswap64 (ucp_ep_h ep, uint64d_t compare, uint64_t swap, uint64 _t
remote_addr, ucp_rkey _h rkey, uinté4_t * result)

© 2016 Unified Communication X. All rights reserved.

UCT — Transport Layer

Applications

MPICH, Open-MPI, etc. OpenSHMEM, UPC, CAF, X10, Parsec, OCR, Legions, etc. Burst buffer, ADIOS, etc.
Chapel, etc.
s a

UC-P (Protocols) - High Level API
Transport selection, cross-transrport multi-rail, fragmentation, operations not supported by hardware

Message Passing APl Domain: PGAS API Domain: Task Based APl Domain: 1/0 APl Domain:
tag matching, randevouze RMAs, Atomics Active Messages Stream

UC-T (Hardware Transports) - Low Level API UC-S

RMA, Atomic, Tag-matching, Send/Recv, Active Message (Services)

Common utilities

Memory
Management

Transport for InfiniBand VERBs Transport for Transport for intra-node host memory communication Transport for
driver Gemini/Aries Accelerator Memory
drivers communucation

OFA Verbs Driver Cray Driver OS Kernel

%

© 2016 Unified Communication X. All rights reserved.

© 2016 Unified Communication X. All rights reserved.

UCT (Transport layer) objects

uct_worker_h - A context for separate progress engine and
communication resources. Can be either thread-dedicated or
shared

uct._md_h - Memory registration domain. Can register user
buffers and/or allocate registered memory

uct_iface_h - Communication interface, created on a specific
memory domain and worker. Handles incoming active
messages and spawns connections to remote interfaces
uct_ep_h - Connection to a remote interface. Used to initiate
communications

© 2016 Unified Communication X. All rights reserved.

UCT initialization

Entity A Entity B

Memory

. Worker
Domain

Out-of-band
Address

Exchange

Interface Interface

Endpoint Endpoint

© 2016 Unified Communication X. All rights reserved.

Memory Domain Routines @

Register/de-register memory within the domain

— Can potentially use a cache to speedup memory
registration

Allocate/de-allocate registered memory

Pack memory region handle to a remote-key-buffer
— Can be sent to another entity

Unpack a remote-key-buffer into a remote-key
— Can be used for remote memory access

© 2016 Unified Communication X. All rights reserved.

UCT Communication Routines

Not everything has to be supported
— Interface reports the set of supported primitives
— UCP uses this info to construct protocols
— UCP implement emulation of unsupported directives

Send active message (active message id)
Put data to a remote memory (virtual address, remote key)
Get data from a remote memory (virtual address, remote key)

Perform an atomic operation on a remote memory:
— Add
— Fetch-and-add
— Swap
— Compare-and-swap

Communication Fence and Flush (Quiet)

© 2016 Unified Communication X. All rights reserved.

UCT Data Classes

 UCT communications have a size limit
— Interface reports max. allowed size for every operation

— Fragmentation, if required, should be handled by user / UCP

* Several data “classes” are supported
— “short” —small buffer

— “bcopy” — a user callback which generates data (in many cases, “memcpy” can be used
as the callback)

— “zcopy” — a buffer and it’s memory region handle. Usually large buffers are supported.

* Atomic operations use a 32 or 64 bit values

© 2016 Unified Communication X. All rights reserved.

UCT Completion Semantics

All operations are non-blocking

Return value indicates the status:
— OK—operation is completed
— INPROGRESS — operation has started, but not completed yet

— NO_RESOURCE - cannot initiate the operation right now. The user might want to put this on a
pending queue, or retry in a tight loop

— ERR_xx—other errors
Operations which may return INPROGRESS (get/atomics/zcopy) can get a
completion handle

— User initializes the completion handle with a counter and a callback
— Each completion decrements the counter by 1, when it reaches 0 — the callback is called

© 2016 Unified Communication X. All rights reserved.

UCT API Snippet

typedef void (xuct_completion_callback_t) (uct_completion_t *self,
ucs_status_t status);

typedef ucs_status_t (kuct_am_callback_t)(void *arg, void xdata, size_t length,
void *desc);

struct uct_completion {
uct_completion_callback_t func;

int count;
};
typedef size_t (*uct_pack_callback_t)(void *xdest, void *arg);
typedef void * uct_mem_h;
typedef uintptr_t uct_rkey_t;

[cs_status_t uct_iface_set_am_handler(uct_iface_h iface, uint8_t id,
uct_am_callback_t cb, void xarg, uint32_t flags);

ucs_status_t uct_ep_put_short(uct_ep_h ep, const void xbuffer, unsigned length,
uint64_t remote_addr, uct_rkey_t rkey)

ssize_t uct_ep_put_bcopy(uct_ep_h ep, uct_pack_callback_t pack_cb,
void *arg, uint64_t remote_addr,
uct_rkey_t rkey)

ucs_status_t uct_ep_put_zcopy(uct_ep_h ep, const void *buffer, size_t length,
uct_mem_h memh, uint64_t remote_addr,
uct_rkey_t rkey, uct_completion_t xcomp)

ucs_status_t uct_ep_am_short(uct_ep_h ep, uint8_t id, uint64_t header,
const void *payload, unsigned length)

ucs_status_t uct_ep_atomic_cswap64(ugt_ep_h ep, uint64_t compare, uint64_t swap,

© 2016 Unifndsat, nemateoaddrisuctarkeyat rkey,
uint64_t xresult, uct_completion_t xcomp)

Guidelines

= FOLLOW RoADWORK [E2 &
= SGNS

© 2016 Unified Communication X. All rights reserved.

Memory @

It is a limited resource

— The goal is to maximize the availability of memory for the
application

Avoid O(n) memory allocations, where n is the number
communication peers (endpoints)

Keep the endpoint object as small as possible

Keep the memory pools size limited

Allocation has to be proportional to the number of in-
flight-operations

© 2016 Unified Communication X. All rights reserved.

Data Path

 Three main data paths:
— Short messages — critical path
— Medium messages
— All the rest

Data Path / Short Messages

Take care of the small-message case first

Avoid function calls

Avoid extra pointer dereference, especially store operations

Avoid adding conditionals, if absolutely required use ucs_likely/ucs_unlikely macros
Avoid bus-locked instructions (atomics)

Avoid branches

No malloc()/free() nor system calls

Limit the scope of local variables (the time from first to last time it is used) - larger scopes
causes spilling more variables to the stack

Use benchmarks and performance analysis tools to analyze the impact on the latency and
message rate

© 2016 Unified Communication X. All rights reserved.

Data Path / Medium I\/Iessages@

* Avoid locks if possible. If needed, use spinlock, no
mutex.

e Reduce function calls

 Move error and slow-path handling code to non-
inline functions, so their local variables will not

add overhead to the prologue and epilogue of
the fast-path function.

© 2016 Unified Communication X. All rights reserved.

Data Path / “Slow” Path

Performance is still important
No system calls / malloc() / free()

It's ok to reasonable add pointer dereferences, conditionals,
function calls, etc.

— Having a readable code here is more important than saving one
conditional or function call.

Protocol-level performance considerations are more important
here, such as fairness between connections, fast convergence, etc.

Avoid O(n) complexity. As a thumb rule, all scheduling mechanisms
have to be O(1).

© 2016 Unified Communication X. All rights reserved.

Summary @

 UCX has been integrated with: '
MPI o#°

— MPI: Open MPI, MPICH,
— OpenSHMEM: Reference Implementation, OSHMEM

* Support multiple transports
— IB/RoCE: RC, UD, DCT, CM
— Aries/Gemini: FMA, SMSG, BTE ditis
— Shared Memory: SysV, Posix, CMA, KNEM, XPMEM

UCX

Unified Communication - X
Framework

WEB:
WWW.0penucx.org

https://github.com/openucx/ucx
Mailing List:
https://elist.ornl.gov/mailman/listinfo/ucx-group

ucx-group@elist.ornl.gov

© 2016 Unified Communication X. All rights reserved.

&

Alina Sklarevich, Mellanox Technologies

OPEN MPI INTEGRATION WITH UCX

© 2016 Unified Communication X. All rights reserved.

Overview

OMPI supports UCX starting OMPI v1.10.
UCX is a PML component in OMPI.

To enable UCX:
—mpirun -mca pml ucx ... <APP>

OMPI is integrated with the UCP layer.

© 2016 Unified Communication X. All rights reserved.

Overview

UCX mca parameters:
—pml_ucx_verbose, pml_ucx_priority

UCX environment parameters:
—ucx_info -f

For example:
mpirun -mca pml ucx -x UCX_NET_DEVICES=mIx5 0:1

© 2016 Unified Communication X. All rights reserved.

... <APP>

Overview @

The calls to the UCP layer will invoke UCT calls.
UCX will select the best transport to use.
OMPI uses Full/Direct modex with UCX.

UCX will connect the ranks.

UCX Features - Recap

Tag-matching

Remote memory operations, one sided operations

Atomic operations

Supported transports:
o IB-ud, rc, dc, accelerated verbs

O shared memory
O uGNI

© 2016 Unified Communication X. All rights reserve

d.

&

UCX Main Objects - Recap

* ucp_context_h
A global context for the application - a single UCP communication instance.

Includes communication resources, memory and other communication information
directly associated with a specific UCP instance.

 ucp_worker_h
Represents an instance of a local communication resource and an independent
progress of communication. It contains the uct_iface_h’s of all selected transports.
One possible usage is to create one worker per thread.

* ucp_ep_h
Represents a connection to a remote worker.
It contains the uct_ep_h’s of the active transports.

© 2016 Unified Communication X. All rights reserved.

UCX Main Objects - Recap

e ucp_mem_h
A handle to an allocated or registered memory in the local process. Contains details
describing the memory, such as address, length etc.

 ucp_rkey h
Remote key handle, communicated to remote peers to enable an access to the
memory region. Contains an array of uct_rkey t’s.

* ucp_config t

Configuration for ucp_context_h. Loaded from the run-time to set environment
parameters for UCX.

© 2016 Unified Communication X. All rights reserved.

UCX AP]

© 2016 Unified Communication X. All rights reserved.

OMPI - UCX Stack @

APPLICATION

OMPI

PML UCX

UCX LIBRARY

DRIVER

HARDWARE

© 2016 Unified Communication X. All rights reserved.

Init Stage @

MPI Init == ompi_mpi_init
- OpenMPI

mca_pml_ucx_open

ucp_config_read
ucp _init . UCX
ucp_config_release

© 2016 Unified Communication X. All rights reserved.

Init Stage - Cont

mca_pml_ucx_init

ucp_worker_ create

ucp_wor

ucp_wor

cer_get address

ker release address

© 2016 Unified Communication X. All rights reserved.

Init Stage - Cont @

opal _progress_register(mca_pml_ucx_progress)

i

ucp_worker_progress

© 2016 Unified Communication X. All rights reserved.

Send Flow @

MPI_lsend = mca_pml_ucx_isend
mca_pml_ucx_add proc

ucp_ep_create
uct_ep_am_short

ucp_tag send nb uct ep am bcopy

uct_ep_am_zcopy

Send Flow - Cont @

If the send request isn’t completed
—> progress it.

Once completed
— callback function is invoked

Contiguous and non-contiguous datatypes are
supported.

Receive Flow @

MPI_lrecv =—> mca_pml_ucx_irecv

Eager Receive

ucp_tag recv_nb <:

Rendezvous

© 2016 Unified Communication X. All rights reserved.

Receive Flow - Cont

Expected & Unexpected queues are used

Can probe with ucp tag probe nb
—> ucp_tag msg recv_nb

If the receive request isn’t completed
—> progress it.

Once completed
— callback functlon IS mvoked

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

&

Progress Flow @

mca_pml_ucx_progress

opal progress

ucp_worker _progress — uct_worker progress

* Send/Receive Finished:

mca_pml _ucx send/recv_completion

© 2016 Unified Communication X. All rights reserved.

Finalization Stage @

MPI_Finalize =™ ompi_mpi_finalize
mca_pml_ucx_del procs

* Per remote peer:

ucp_ep_destroy

© 2016 Unified Communication X. All rights reserved.

Finalization Stage - Cont @

mca_pml_ucx_cleanup

opal_progress_unregister (mca_pml_ucx_progress)

ucp_worker destroy

mca_pml_ucx_close

ucp_cleanup

PERFORMANCE

© 2016 Unified Communication X. All rights reserved.

PERFORMANCE

Setup Details:

MLNX_ OFED_LINUX-3.3-1.0.0.0

ConnectX-4

EDR - 100Gb/sec

Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz
2 hosts connected via switch

Command Line:

Smpirun -np 2 --bind-to core --map-by node -mca pml ucx
-x UCX_TLS=rc_mlx5,cm osu_bw

© 2016 Unified Communication X. All rights reserved.

MB/sec

12000

10000

8000

6000

4000

2000

[2

~ e

16

32

128

osu_bw

256 512 1024 2048 4096 8192

Message size in Bytes

© 2016 Unified Communication X. All rights reserved.

16384

32768

65536

131072

262144

524288 1048576 2097152 4194304

25000

20000

15000

MB/sec

10000

5000

L 2

[y

L

~ ¢

16

32

128

osu_bibw

256 512 1024 2048 4096 8192

Message size in Bytes

© 2016 Unified Communication X. All rights reserved.

16384

32768

65536

131072

262144

524288 1048576 2087152 4194304

usecs

10

16

32

osu_latency

64 128 256 512 1024

Message size in Bytes

© 2016 Unified Communication X. All rights reserved.

2048

40%6

8192

16384

32768

65536

Swen Boehm, Oak Ridge National Laboratory

OPENSHMEM INTEGRATION WITH UCX

© 2016 Unified Communication X. All rights reserved.

OpenSHMEM - Overview @

* PGAS Library
e One-sided Communication

* Atomic operations
* Collectives

© 2016 Unified Communication X. All rights reserved.

Symmetric Memory @

All Processing Elements (PE's) share an address space
(symmetric heap)

Symmetric heap is allocated on startup

Heapsize can be customized via environment variable
SMA_SYMMETRIC_SIZE

Symmetric data objects must be allocated with
shmem_malloc

Symmetric data objects are accessible by remote PEs

© 2016 Unified Communication X. All rights reserved.

Shared global address space @

* Global and static variables are symmetric
objects

* Accessibe by remote PEs

© 2016 Unified Communication X. All rights reserved.

OpenSHMEM Reference @
Implementation

Core Components

© 2016 Unified Communication X. All rights reserved.

Initialization
shmem_init
shmemi_commes_init

ucp_config_read

ucp_init

ucp_config_release

ucp_worker_create
init_memory_regions (more on this later)

ucp_ep_create (for each PE)
ucp_config_release

© 2016 Unified Communication X. All rights reserved.

Memory registration @

* OpenSHMEM registers global data (data and bss
segment) and the symmetric heap

* ucp mem map mapsthe memory with the ucp
context (returning ucp mem h)

Seg A Seg B

© 2016 Unified Communication X. All rights reserved.

RMA ey,

For RMA operations UCP needs Remote Memory
Handle (remote key or rkey)

rkeys require registered memory (ucp mem h)

ucp_rkey pack is used to generate packed
representation

The packed rkey is exchanged with remote PE(s)

ucp ep rkey unpack will return rkey t
handle

© 2016 Unified Communication X. All rights reserved.

Translating symmetric addresse@

e To access a remote address
the rkey is needed

* Look up rkey with find_seg

e translate local buffer
address into remote buffer
address

© 2016 Unified Communication X. All rights reserved.

RMA put

shmem_ <TYPENAME> put

ucx_put
find_seg

translate_symmetric_address
uct_ep_put_short

ucp_put uct_ep put_bcopy
uct_ep put_zcopy*

© 2016 Unified Communication X. All rights reserved.

RMA get

shmem_ <TYPENAME> get

ucx_get
find_seg
translate_symmetric_address

_» uct_ep_get_bcopy

ucp_get
- TR e _ep_get_zcopy*

RMA atomics @

shmem_ <TYPENAME> <OP>

ucx_get
find_seg
translate_symmetric_address
ucp_atomic_<op,size>
uct_ep_atomic_<op,size>

© 2016 Unified Communication X. All rights reserved.

PERFORMANCE

Setup:
Turing Cluster @ ORNL

Red Hat Enterprise Linux Server release 7.2
(3.10.0-327.13.1.el7.x86_64)

Mellanox ConnectX-4 VPI

EDR IB (100Gb/s)

Intel Xeon E5-2660 v3 @ 2.6GHz
Command Line:

$ orterun -np 2 osu oshmem put mr

© 2016 Unified Communication X. All rights reserved.

Messages per second

108

-108

108

108

-108

108

OSU Message Rate

T

T

T T T T T T T T

I N R (AN s

Message size in Bytes

© 2016 Unified Communication X. All rights reserved.

) D(QQ)Q)

e

\6(5%&

3 ©
%‘5‘6 666‘3

Latency in us

OSU Put Latency

2

A 2 & LI L - o

B o) © A B N)
AQ¥ ,LQD‘ QO \63% 3‘&16 666‘5

Message size in Bytes

© 2016 Unified Communication X. All rights reserved.

Latency in us

OSU Get Latency

A N ® ® N > © N ® © N > ©
3 A 3 o N A o @ R Lt

Message size in Bytes

© 2016 Unified Communication X. All rights reserved.

Compiling UCX @

$./autogen.sh

$./contrib/configure-release --prefix=SPWD/
install

$ make -j8 install

© 2016 Unified Communication X. All rights reserved.

Swen Boehm, Oak Ridge National Laboratory

EXAMPLES

Compile OpenMPI| with UCX @

$./autgen.pl
$./configure --prefix=SPWD/install \
--with-ucx=SPWD/ucx

$ make && make install

© 2016 Unified Communication X. All rights reserved.

Build OpenSHMEM on UCX @

$./autogen.pl

$./configure --with-comms-layer=ucx \
--with-ucx-root=SPWD/install \
--with-rte-root=SPWD/install \
--prefix=SPWD/install

$ make && make install

© 2016 Unified Communication X. All rights reserved.

UCX — Hello World Example @

ucp hello world.c

© 2016 Unified Communication X. All rights reserved.

Alina Sklarevich, Mellanox Technologies

EXAMPLES
ARM' Ao %Ri06;

Connect. Accelerate. Qutperform” National Laboratory
© 2016 Unified Communication X. All rights reserved.

OSU BW

mpirun -mca pml ucx -np 2 -H clx-orion-097,clx-orion-098 -x UCX_NET_DEVICES=mlx5_2:1 -x UCX_TLS=rc_mlx5,cm -x UCX_RNDV_THRESH=16384 --map-by node --bind
-to core $OSU_TEST/osu_bw

0SU MPI Bandwidth Test v5.0

Size Bandwidth (MB/s)
1 7.43
2 14.95
4 30.01
8 59.97
16 120.13
32 237.29
64 421.77
128 814.45
256 1292.24
512 2367.80
1024 3870.03
2048 6654.26
4096 9460.64
8192 10598.88
16384 10485.12
32768 11607.45
65536 11847.64
131072 11958.01
262144 12014.55
524288 12044.04
1048576 12058.39
2097152 12010.11

4194304 12016.12 © 2016 Unified Communication X. All rights reserved.

OSU BIBW

mpirun -mca pml ucx -np 2 -H clx-orion-097,clx-orion-098 -x UCX_NET_DEVICES=mlx5_2:1 -x UCX_TLS=rc_mlx5,cm -x UCX_RNDV_THRESH=16384

-to core $0SU_TEST/osu_bibw

0SU MPI Bi-Directional Bandwidth Test v5.0

Size Bandwidth (MB/s)
1 8.60
2 17.56
4 35.05
8 68.69
16 140.16
32 281.43
64 465.20
128 917.45
256 1506.33
512 2651.08
1024 4404.89
2048 7059.17
4096 11430.23
8192 14035.32
16384 17408.31
32768 20972.95
65536 21929.01
131072 22647.14
262144 23015.46
524288 23186.88
1048576 23226.71
2097152 23284.50
4194304 23191.45

© 2016 Unified Communication X. All rights reserved.

--map-by node

--bind

OSU LATENCY

mpirun -mca pml ucx -np 2 -H clx-orion-097,clx-orion-098 -x UCX_NET_DEVICES=mlx5_2:1 -x UCX_TLS=rc_mlx5,cm -x UCX_RNDV_THRESH=16384

-to core $0SU_TEST/osu_latency

0SU MPI Latency Test v5.0
Size Latency (us)
0 0.92
1 0.92
2 0.92
- 0.92
8 0.92
16 0.92
32 0.97
64 1.06
128 1.10
256 1.60
512 1.73
1024 1.96
2048 2.20
4096 2.78
8192 3.48
16384 5.74
32768 7.11
65536 9.83
131072 15.25
262144 26.12
524288 47.98
1048576 92.41
2097152 181.23
4194304 355.95

© 2016 Unified Communication X. All rights reserved.

--map-by node

--bind

UCX_ PERFTEST

$./bin/ucx_perftest vegas06 -d mlx5 0:1 -t am _ bw -x rc_mlx5 -c 1

+-------------- e R e eI R +
| | latency (usec) | bandwidth (MB/s) | message rate (msg/s) |
e e +--------- +--------- +--------- +---------- +---------- +----------- +----------- -
| # iterations | typical | average | overall | average | overall | average | overall |
+-----mm - - - - - - +--------- +--------- +--------- +---------- +---------- +----------- +----------- +
1000000 0.080 0.080 0.080 95.24 95.24 12483016 12483016

© 2016 Unified Communication X. All rights reserved.

UCX

Unified Communication - X
Framework

WEB:
WWW.0penucx.org

https://github.com/openucx/ucx
Mailing List:
https://elist.ornl.gov/mailman/listinfo/ucx-group

ucx-group@elist.ornl.gov

© 2016 Unified Communication X. All rights reserved.

Acknowledgements @

National Laboratory

This workwas supported by the United States
Department of Defense & used resources at Oak
Ridge National Laboratory.

© 2016 Unified Communication X. All rights reserved.

